Polygenic risk score and coronary artery disease: A meta-analysis of 979,286 participant data

被引:21
作者
Agbaedeng, Thomas A. [1 ,2 ]
Noubiap, Jean Jacques [1 ]
Mato, Edith Pascale Mofo [3 ]
Chew, Derek P. [4 ,5 ]
Figtree, Gemma A. [6 ,7 ]
Said, M. Abdullah [8 ]
van der Harst, Pim [9 ]
机构
[1] Univ Adelaide, Ctr Heart Rhythm Disorders, Adelaide, SA, Australia
[2] Ctr Cardiometab Expt & Innovat, Adelaide, SA, Australia
[3] Univ Kwazulu Natal, Mol & Clin Pharmacol Res Lab, Durban, South Africa
[4] Flinders Univ S Australia, Coll Med & Publ Hlth, Adelaide, SA, Australia
[5] South Australian Hlth & Med Res Inst, Heart Hlth Theme, Adelaide, SA, Australia
[6] Univ Sydney, Kolling Inst, Sydney, NSW, Australia
[7] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia
[8] Univ Groningen, Univ Med Ctr Groningen, Dept Cardiol, NL-9700 RB Groningen, Netherlands
[9] Univ Med Ctr Utrecht, Dept Cardiol, Heart & Lung Div, Utrecht, Netherlands
关键词
Polygenic risk score; Coronary artery disease; Myocardial infarction; Genome-wide association study; Single-nucleotide polymorphism; GENOME-WIDE ASSOCIATION; MYOCARDIAL-INFARCTION; HEART-DISEASE; FAMILIAL HYPERCHOLESTEROLEMIA; ACCURACY; PREDICTION; SEX;
D O I
10.1016/j.atherosclerosis.2021.08.020
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and aims: Coronary artery disease (CAD) is a complex disease with a strong genetic basis. While previous studies have combined common single-nucleotide polymorphisms (SNPs) into a polygenic risk score (PRS) to predict CAD risk, this association is poorly characterised. We performed a meta-analysis to estimate the effect of PRS on the risk of CAD. Methods: Online databases were searched for studies reporting PRS and CAD. PRS computation was based on logodds (PRSLN), pruning or clumping and thresholding (PRSP/C + T), Lassosum regression (PRSLassosum), LDpred (PRSLDpred), or metaGRS (PRSmetaGRS). The reported odds ratio (OR), hazard ratio (HR), C-indexes and their corresponding 95% confidence interval (95% CI) were pooled in a random-effects meta-analysis. Results: Forty-nine studies were included (979,286 individuals). There was a significant association between 1standard deviation [SD] increment in PRS and adjusted risks of both incident and prevalent CAD (OR [95% CI]: 1.67 [1.57-1.77] for PRSmetaGRS, 1.46 [1.26-1.68] for PRSLDpred). The risk of incident CAD was highest for PRSP/C + T (HR [95% CI]: 1.49 [1.26-1.78]), PRSmetaGRS (1.37 [1.27-1.47]), and PRSLDpred (1.36 [1.31-1.42]). Analysis of model performance demonstrated that PRS predicted incident CAD with C-index of up to 0.71. Importantly, addition of PRS to clinical risk scores resulted in modest but statistically significant improvements in CAD risk prediction, with 1.5% observed for PRSP/C + T (p < 0.001) and 1.6% for PRSLDpred (p < 0.001). Conclusions: Polygenic risk score is strongly associated with increased risks of CAD. Future prospective studies should explore the usefulness of polygenic risk scores for identifying individuals at a high risk of developing CAD.
引用
收藏
页码:48 / 55
页数:8
相关论文
共 35 条
[1]   Genetic identification of familial hypercholesterolemia within a single US health care system [J].
Abul-Husn, Noura S. ;
Manickam, Kandamurugu ;
Jones, Laney K. ;
Wright, Eric A. ;
Hartzel, Dustin N. ;
Gonzaga-Jauregui, Claudia ;
O'Dushlaine, Colm ;
Leader, Joseph B. ;
Kirchner, H. Lester ;
Lindbuchler, D'Andra M. ;
Barr, Marci L. ;
Giovanni, Monica A. ;
Ritchie, Marylyn D. ;
Overton, John D. ;
Reid, Jeffrey G. ;
Metpally, Raghu P. R. ;
Wardeh, Amr H. ;
Borecki, Ingrid B. ;
Yancopoulos, George D. ;
Baras, Aris ;
Shuldiner, Alan R. ;
Gottesman, Omri ;
Ledbetter, David H. ;
Carey, David J. ;
Dewey, Frederick E. ;
Murray, Michael F. .
SCIENCE, 2016, 354 (6319)
[2]   Cardiovascular risk prediction models for women in the general population: A systematic review [J].
Baart, Sara J. ;
Dam, Veerle ;
Scheres, Luuk J. J. ;
Damen, Johanna A. A. G. ;
Spijker, Rene ;
Schuit, Ewoud ;
Debray, Thomas P. A. ;
Fauser, Bart C. J. M. ;
Boersma, Eric ;
Moons, Karel G. M. ;
van der Schouw, Yvonne T. ;
Appelman, Yolande ;
Baart, Sara ;
Benschop, Laura ;
Boersma, Eric ;
Brouwers, Laura ;
Budde, Ricardo P. J. ;
Cannegieter, Suzanne C. ;
Dam, Veerle ;
Eijkemans, Rene M. J. C. ;
Fauser, Bart C. J. M. ;
Ferrari, Michel D. ;
Franx, Arie ;
de Groot, Christianne J. M. ;
Gunning, Marlise N. ;
Hoek, Annemiek ;
Koffijberg, Hendrik ;
Koster, Maria P. H. ;
Kruit, Mark C. ;
Lagerweij, Ghizelda R. ;
Lambalk, Cornelis B. ;
Laven, Joop S. E. ;
Linstra, Katie M. ;
van der Lugt, Aad ;
Maas, Angela H. E. M. ;
van den Brink, Antoinette Maassen ;
Meun, Cindy ;
Middeldorp, Saskia ;
Moons, Karel G. M. ;
van Rijn, Bas B. ;
van Lennep, Jeanine E. Roeters ;
Roos-Hesselink, Jolien W. ;
Scheres, Luuk J. J. ;
van der Schouw, Yvonne T. ;
Steegers, Eric A. P. ;
Steegers-Theunissen, Regine P. M. ;
Terwindt, Gisela M. ;
Velthuis, Birgitta K. ;
Wermer, Marieke J. H. ;
Zoet, Gerbrand A. .
PLOS ONE, 2019, 14 (01)
[3]   Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217 [J].
Benn, Marianne ;
Watts, Gerald F. ;
Tybjaerg-Hansen, Anne ;
Nordestgaard, Borge G. .
EUROPEAN HEART JOURNAL, 2016, 37 (17) :1384-1394
[4]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[5]   Sequence variations in PCSK9, low LDL, and protection against coronary heart disease [J].
Cohen, JC ;
Boerwinkle, E ;
Mosley, TH ;
Hobbs, HH .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (12) :1264-1272
[6]   Further Insight Into the Cardiovascular Risk Calculator The Roles of Statins, Revascularizations, and Underascertainment in the Women's Health Study [J].
Cook, Nancy R. ;
Ridker, Paul M. .
JAMA INTERNAL MEDICINE, 2014, 174 (12) :1964-1971
[7]   Power and Predictive Accuracy of Polygenic Risk Scores [J].
Dudbridge, Frank .
PLOS GENETICS, 2013, 9 (03)
[8]   Analysis of polygenic risk score usage and performance in diverse human populations [J].
Duncan, L. ;
Shen, H. ;
Gelaye, B. ;
Meijsen, J. ;
Ressler, K. ;
Feldman, M. ;
Peterson, R. ;
Domingue, B. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Clinical Characteristics and Burden of Risk Factors Among Patients With Early Onset Acute Coronary Syndromes: The ANZACS-QI New Zealand National Cohort (ANZACS-QI 17) [J].
Earle, Nikki J. ;
Poppe, Katrina K. ;
Doughty, Robert N. ;
Rolleston, Anna ;
Kerr, Andrew J. ;
Legget, Malcolm E. .
HEART LUNG AND CIRCULATION, 2018, 27 (05) :568-575
[10]   Predictive Accuracy of a Polygenic Risk Score-Enhanced Prediction Model vs a Clinical Risk Score for Coronary Artery Disease [J].
Elliott, Joshua ;
Bodinier, Barbara ;
Bond, Tom A. ;
Chadeau-Hyam, Marc ;
Evangelou, Evangelos ;
Moons, Karel G. M. ;
Dehghan, Abbas ;
Muller, David C. ;
Elliott, Paul ;
Tzoulaki, Ioanna .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (07) :636-645