Persistence criteria for populations with non-local dispersion

被引:77
作者
Berestycki, Henri [1 ]
Coville, Jerome [2 ]
Hoang-Hung Vo [3 ]
机构
[1] Ecole Hautes Etud Sci Sociales, CAMS, 190-198 Ave France, F-75013 Paris, France
[2] INRA, UR Biostat & Processus Spatiaux 546, Domaine St Paul Site Agroparc, F-84000 Avignon, France
[3] Ton Duc Thang Univ, Fac Math & Stat, 19 Nguyen Huu Tho, Ho Chi Minh City, Vietnam
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Heterogeneous KPP nonlocal equation; Persistence criteria; Dispersal budget; Asymptotic behaviours; ESS; REACTION-DIFFUSION EQUATIONS; IDEAL-FREE DISTRIBUTION; PRINCIPAL EIGENVALUE; ELLIPTIC-EQUATIONS; SEED DISPERSAL; EVOLUTION; DYNAMICS; ENVIRONMENTS; STABILITY; EXISTENCE;
D O I
10.1007/s00285-015-0911-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we analyse the non-local model: partial derivative(t)u(t, x) = J star u(t, x) -u(t, x) + f (x, u(t, x)) for t > 0, and x is an element of R-N, where J is a positive continuous dispersal kernel and f (x, u) is a heterogeneous KPP type non-linearity describing the growth rate of the population. The ecological niche of the population is assumed to be bounded (i.e. outside a compact set, the environment is assumed to be lethal for the population). For compactly supported dispersal kernels J, we derive an optimal persistence criteria. We prove that a positive stationary solution exists if and only if the generalised principal eigenvalue lambda(p) of the linear problem J star phi - phi + partial derivative(S)f ( x, 0)phi + lambda(p)phi = 0 in R-N, is negative. lambda(p) is a spectral quantity that we defined in the spirit of the generalised first eigenvalue of an elliptic operator. In addition, for any continuous non-negative initial data that is bounded or integrable, we establish the long time behaviour of the solution u(t, x). We also analyse the impact of the size of the support of the dispersal kernel on the persistence criteria. We exhibit situations where the dispersal strategy has "no impact" on the persistence of the species and other ones where the slowest dispersal strategy is not any more an "Ecological Stable Strategy". We also discuss persistence criteria for fat-tailed kernels.
引用
收藏
页码:1693 / 1745
页数:53
相关论文
共 64 条
[1]  
[Anonymous], 2002, Banach Center Publ.
[2]   On several conjectures from evolution of dispersal [J].
Averill, Isabel ;
Lou, Yuan ;
Munther, Dan .
JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) :117-130
[3]   Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal [J].
Bates, Peter W. ;
Zhao, Guangyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :428-440
[4]   Can a Species Keep Pace with a Shifting Climate? [J].
Berestycki, H. ;
Diekmann, O. ;
Nagelkerke, C. J. ;
Zegeling, P. A. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (02) :399-429
[5]  
Berestycki H, 2006, J EUR MATH SOC, V8, P195
[6]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[7]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[8]  
Berestycki H., 2014, PREPRINT
[9]  
Berestycki H, 2008, DISCRETE CONT DYN-A, V21, P41
[10]   Liouville-type results for semilinear elliptic equations in unbounded domains [J].
Berestycki, Henri ;
Hamel, Francois ;
Rossi, Luca .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (03) :469-507