Parallel Pairwise Epistasis Detection on Heterogeneous Computing Architectures

被引:12
作者
Gonzalez-Dominguez, Jorge [1 ]
Ramos, Sabela [2 ]
Tourino, Juan [2 ]
Schmidt, Bertil [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Comp Sci, Parallel & Distributed Architectures Grp, Mainz, Germany
[2] Univ A Coruna, Comp Architecture Grp, Dept Elect & Syst, La Coruna, Spain
基金
英国惠康基金;
关键词
High performance computing; epistasis; pairwise gene-gene interaction; Xeon Phi; GPU; GENE-GENE INTERACTIONS; SNP INTERACTIONS; ASSOCIATION; TOOL;
D O I
10.1109/TPDS.2015.2460247
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Development of new methods to detect pairwise epistasis, such as SNP-SNP interactions, in Genome- Wide Association Studies is an important task in bioinformatics as they can help to explain genetic influences on diseases. As these studies are time consuming operations, some tools exploit the characteristics of different hardware accelerators (such as GPUs and Xeon Phi coprocessors) to reduce the runtime. Nevertheless, all these approaches are not able to efficiently exploit the whole computational capacity of modern clusters that contain both GPUs and Xeon Phi coprocessors. In this paper we investigate approaches to map pairwise epistasic detection on heterogeneous clusters using both types of accelerators. The runtimes to analyze the well-known WTCCC dataset consisting of about 500 K SNPs and 5 K samples on one and two NVIDIA K20m are reduced by 27 percent thanks to the use of a hybrid approach with one additional single Xeon Phi coprocessor.
引用
收藏
页码:2329 / 2340
页数:12
相关论文
共 41 条
[1]  
[Anonymous], 2014, INTEL XEON PHI COPRO
[2]  
Bell C., 2006, P INT C PAR DISTR PR, P1
[3]   Comparing the Utility of Homogeneous Subtypes of Cocaine Use and Related Behaviors With DSM-IV Cocaine Dependence as Traits for Genetic Association Analysis [J].
Bi, Jinbo ;
Gelernter, Joel ;
Sun, Jiangwen ;
Kranzler, Henry R. .
AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2014, 165 (02) :148-156
[4]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[5]  
Chan S.-H., 2014, MICA FAST SHORT READ
[6]  
Chen Gary K., 2013, Frontiers in Genetics, V4, P266, DOI 10.3389/fgene.2013.00266
[7]  
Chrysos G, 2012, IEEE HOT CHIP SYMP
[8]   A genome-wide gene-gene interaction analysis identifies an epistatic gene pair for lung cancer susceptibility in Han Chinese [J].
Chu, Minjie ;
Zhang, Ruyang ;
Zhao, Yang ;
Wu, Chen ;
Guo, Huan ;
Zhou, Baosen ;
Lu, Jiachun ;
Shi, Yongyong ;
Dai, Juncheng ;
Jin, Guangfu ;
Ma, Hongxia ;
Dong, Jing ;
Wei, Yongyue ;
Wang, Cheng ;
Gong, Jianhang ;
Sun, Chongqi ;
Zhu, Meng ;
Qiu, Yongyong ;
Wu, Tangchun ;
Hu, Zhibin ;
Lin, Dongxin ;
Shen, Hongbing ;
Chen, Feng .
CARCINOGENESIS, 2014, 35 (03) :572-577
[9]   Detecting gene-gene interactions that underlie human diseases [J].
Cordell, Heather J. .
NATURE REVIEWS GENETICS, 2009, 10 (06) :392-404
[10]  
Edwards T. L., 2008, P 6 EUR C EV COMP MA, P736