On universally easy classes for NP-complete problems

被引:4
|
作者
Demaine, ED
López-Ortiz, A
Munro, JI
机构
[1] MIT, Comp Sci Lab, Cambridge, MA 02139 USA
[2] Univ Waterloo, Dept Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
complexity theory; polynomial time; NP-completeness; classes of instances; universally polynomial; universally simplifying; regular languages;
D O I
10.1016/S0304-3975(03)00286-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We explore the natural question of whether all NP-complete problems have a common restriction under which they are polynomially solvable. More precisely, we study what languages are universally easy in that their intersection with any NP-complete problem is in P (universally polynomial) or at least no longer NP-complete (universally simplifying). In particular, we give a polynomial-time algorithm to determine whether a regular language is universally easy. While our approach is language-theoretic, the results bear directly on finding polynomial-time solutions to very broad and useful classes of problems. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:471 / 476
页数:6
相关论文
共 50 条
  • [21] Satogaeri, Hebi and Suraromu are NP-Complete
    Kanehiro, Shohei
    Takenaga, Yasuhiko
    3RD INTERNATIONAL CONFERENCE ON APPLIED COMPUTING AND INFORMATION TECHNOLOGY (ACIT 2015) 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND INTELLIGENCE (CSI 2015), 2015, : 46 - 51
  • [22] CLIQUE-WIDTH IS NP-COMPLETE
    Fellows, Michael R.
    Rosamond, Frances A.
    Rotics, Udi
    Szeider, Stefan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (02) : 909 - 939
  • [23] Optimal Jacobian accumulation is NP-complete
    Naumann, Uwe
    MATHEMATICAL PROGRAMMING, 2008, 112 (02) : 427 - 441
  • [24] Zen Puzzle Garden is NP-complete
    Houston, Robin
    White, Joseph
    Amos, Martyn
    INFORMATION PROCESSING LETTERS, 2012, 112 (03) : 106 - 108
  • [25] Optimal Jacobian accumulation is NP-complete
    Uwe Naumann
    Mathematical Programming, 2008, 112 : 427 - 441
  • [26] The Cophylogeny Reconstruction Problem Is NP-Complete
    Ovadia, Y.
    Fielder, D.
    Conow, C.
    Libeskind-Hadas, R.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (01) : 59 - 65
  • [27] Minimum Manhattan Network is NP-Complete
    Chin, Francis Y. L.
    Guo, Zeyu
    Sun, He
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 45 (04) : 701 - 722
  • [28] The coherence of Lukasiewicz assessments is NP-complete
    Bova, Simone
    Flaminio, Tommaso
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2010, 51 (03) : 294 - 304
  • [29] Application of formal languages in polynomial transformations of instances between NP-complete problems
    Jorge A. Ruiz-Vanoye
    Joaquín Pérez-Ortega
    Rodolfo A. Pazos Rangel
    Ocotlán Díaz-Parra
    Héctor J. Fraire-Huacuja
    Juan Frausto-Solís
    Gerardo Reyes-Salgado
    Laura Cruz-Reyes
    Journal of Zhejiang University SCIENCE C, 2013, 14 : 623 - 633
  • [30] QUANTUM COMPUTING ALGORITHMS FOR INVERSE PROBLEMS ON GRAPHS AND AN NP-COMPLETE INVERSE PROBLEM
    Ilmavirta, Joonas
    Lassas, Matti
    Lu, Jinpeng
    Oksanen, Lauri
    Ylinen, Lauri
    INVERSE PROBLEMS AND IMAGING, 2025, 19 (04) : 660 - 692