Irregular discrepancy behavior of lacunary series II

被引:12
作者
Aistleitner, Christoph [1 ]
机构
[1] Graz Univ Technol, Inst Math A, A-8010 Graz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2010年 / 161卷 / 03期
关键词
Discrepancy; Lacunary series; Law of the iterated logarithm;
D O I
10.1007/s00605-009-0165-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1975 Philipp proved the following law of the iterated logarithm (LIL) for the discrepancy of lacunary series: let (n(k))(k >= 1) be a lacunary sequence of positive integers, i.e. a sequence satisfying the Hadamard gap condition n(k+1)/n(k) > q > 1. Then 1/(4 root 2) <= lim sup(N ->infinity) ND(N)(n(k)x)(2N log log N)(-1/2) <= C(q) for almost all x is an element of (0, 1) in the sense of Lebesgue measure. The same result holds, if the "extremal discrepancy" D(N) is replaced by the "star discrepancy" D(N)*. It has been a long standing open problem whether the value of the limsup in the LIL has to be a constant almost everywhere or not. In a preceding paper we constructed a lacunary sequence of integers, for which the value of the limsup in the LIL for the star discrepancy is not a constant a. e. Now, using a refined version of our methods from this preceding paper, we finally construct a sequence for which also the value of the limsup in the LIL for the extremal discrepancy is not a constant a.e.
引用
收藏
页码:255 / 270
页数:16
相关论文
共 10 条
[1]  
Aistleitner C., MONATSHEFTE IN PRESS
[2]  
Aistleitner C., T AM MATH S IN PRESS
[3]   On the central limit theorem for f (nkx) [J].
Aistleitner, Christoph ;
Berkes, Istvan .
PROBABILITY THEORY AND RELATED FIELDS, 2010, 146 (1-2) :267-289
[4]  
Drmota M., 1997, SEQUENCES DISCREPANC, V1651
[5]   The law of the iterated logarithm for discrepancies of {θnx} [J].
Fukuyama, K. .
ACTA MATHEMATICA HUNGARICA, 2008, 118 (1-2) :155-170
[6]  
HARMAN G, 1998, LONDON MATH SOC MONO, V18
[7]  
Philipp W., 1974, Acta Arith., V26, P241
[8]  
SHORACK R, 1986, EMPIRICAL PROCESSES
[9]  
Zygmund A., 1979, TRIGONOMETRIC SERIES, V1
[10]  
Zygmund A., 1979, TRIGONOMETRIC SERIES, V2