A Deep Learning U-Net Based Model to Automatically Correct Inaccurate Auto-Segmentation for MR-Guided Adaptive Radiotherapy

被引:0
|
作者
Ding, J. [1 ]
Zhang, Y. [1 ]
Amjad, A. [1 ]
Sarosiek, C. [1 ]
Dang, N. [1 ]
Li, X. [1 ]
机构
[1] Med Coll Wisconsin, Milwaukee, WI USA
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
WE-G-BRC-0
引用
收藏
页码:E553 / E553
页数:1
相关论文
共 50 条
  • [1] Deep learning based automatic contour refinement for inaccurate auto-segmentation in MR-guided adaptive radiotherapy
    Ding, Jie
    Zhang, Ying
    Amjad, Asma
    Sarosiek, Christina
    Dang, Nguyen Phuong
    Zarenia, Mohammad
    Li, X. Allen
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (05):
  • [2] Automatic Contour Refinement of Inaccurate Auto-Segmentation Using an Active Contour Model for MR-Guided Adaptive Radiotherapy
    Ding, J.
    Zhang, Y.
    Amjad, A.
    Xu, J.
    Thill, D.
    Li, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E554 - E554
  • [3] A Prior Knowledge Guided Deep Learning Model for GTV Auto-Segmentation On 4DMRI in MR-Guided Adaptive Radiotherapy of Pancreatic Cancer
    Liang, Y.
    Zhang, Y.
    Hall, W.
    Paulson, E.
    Chen, X.
    Erickson, B.
    Li, X.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [4] Deep Learning Auto-Segmentation on Multi-Sequence MRI for MR-Guided Adaptive Radiation Therapy
    Amjad, A.
    Xu, J.
    Zhu, X.
    Buchanan, L.
    Kun, T.
    O'Connell, N.
    Thill, D.
    Erickson, B. A.
    Hall, W. A.
    Li, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E107 - E107
  • [5] A Generalizable Guided Deep Learning Auto-Segmentation Method of Pancreatic GTV on Multi-Protocol Daily MRIs for MR-Guided Adaptive Radiotherapy
    Zhang, Y.
    Liang, Y.
    Hall, W. A.
    Paulson, E. S.
    Chen, X.
    Erickson, B. A.
    Li, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E113 - E113
  • [6] Auto-Correction of Inaccurate Auto-Segmentation for MRI-Guided Adaptive Radiotherapy
    Ding, J.
    Zhang, Y.
    Amjad, A.
    Xu, J.
    Thill, D.
    Li, X.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [7] A Multi-Layer Auto-Segmentation Quality Assurance and Correction Pipeline for MR-Guided Adaptive Radiotherapy
    Zhang, Y.
    Amjad, A.
    Ding, J.
    Dang, N. P.
    Sarosiek, C.
    Li, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : S162 - S162
  • [8] A comprehensive benchmarking of a U-Net based model for midbrain auto-segmentation on transcranial sonography
    Kang, Hong-yu
    Zhang, Wei
    Li, Shuai
    Wang, Xinyi
    Sun, Yu
    Sun, Xin
    Li, Fang-Xian
    Hou, Chao
    Lam, Sai-kit
    Zheng, Yong-ping
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 258
  • [9] An Intentionally-Overfitting Automatic Contour Quality Assurance Tool for Auto-Segmentation in MR-Guided Online Adaptive Radiotherapy
    Zhang, Y.
    Zarenia, M.
    Sarosiek, C.
    Amjad, A.
    Conlin, R.
    Erickson, B. A.
    Hall, W. A.
    Paulson, E. S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E208 - E208
  • [10] Feasibility of Cardiac Chamber Auto-Segmentation and Dose Optimization for MR-Guided Online Adaptive Radiotherapy of Central Lung Cancer
    Chen, X.
    Weng, J.
    Ding, Y.
    Sobremonte, A.
    Mohammedsaid, M.
    Zhao, Y.
    Zhang, X.
    Niedzielski, J.
    Shete, S. S.
    Court, L. E.
    Liao, Z.
    Wang, J.
    Lee, P.
    Yang, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E202 - E202