A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate

被引:101
作者
Zhai, Tianrui [1 ,2 ]
Chen, Jie [3 ]
Chen, Li [3 ]
Wang, Jieyu [1 ,2 ]
Wang, Li [1 ,2 ]
Liu, Dahe [4 ]
Li, Songtao [1 ,2 ,3 ]
Liu, Hongmei [1 ,2 ]
Zhang, Xinping [1 ,2 ]
机构
[1] Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[3] North China Elect Power Univ, Dept Math & Phys, Baoding 071000, Hebei, Peoples R China
[4] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
PUMPED RANDOM LASERS;
D O I
10.1039/c4nr06632d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A mechanically-tunable random laser based on a waveguide-plasmonic scheme has been investigated. This laser can be constructed by spin coating a solution of polydimethylsiloxane doped with the rhodamine 6G organic dye and silver nanowires onto a silicone rubber slab. The excellent overlap of the plasmon resonance peak of the silver nanowires with both the pump wavelength and the photoluminescence spectrum provides the low threshold and tuning properties of the random laser. The random laser wavelength can be tuned from 558 to 565 nm by stretching the soft substrate, which causes reorientation and breakage of the silver nanowires. The polarization state of the random laser can also be changed from random polarization to partial polarization by stretching. The laser performance remains unchanged after the stretching and restoration experiments. These results not only enable easy realization of an ultrathin flexible plasmonic random laser but also provide insights into the mechanisms of three-dimensional plasmonic feedback random lasers.
引用
收藏
页码:2235 / 2240
页数:6
相关论文
共 20 条
[1]   A flexible organic random laser based on poly(9,9-dioctylfluorene) deposited on a surface corrugated poly-phthalate-carbonate substrate [J].
Anni, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (25)
[2]   Random laser action in semiconductor powder [J].
Cao, H ;
Zhao, YG ;
Ho, ST ;
Seelig, EW ;
Wang, QH ;
Chang, RPH .
PHYSICAL REVIEW LETTERS, 1999, 82 (11) :2278-2281
[3]   Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser [J].
Dice, GD ;
Mujumdar, S ;
Elezzabi, AY .
APPLIED PHYSICS LETTERS, 2005, 86 (13) :1-3
[4]   Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing [J].
Heydari, Esmaeil ;
Flehr, Roman ;
Stumpe, Joachim .
APPLIED PHYSICS LETTERS, 2013, 102 (13)
[5]   OPTICAL CONSTANTS OF NOBLE METALS [J].
JOHNSON, PB ;
CHRISTY, RW .
PHYSICAL REVIEW B, 1972, 6 (12) :4370-4379
[6]   Flexible ultraviolet random lasers based on nanoparticles [J].
Lau, SP ;
Yang, HY ;
Yu, SF ;
Yuen, C ;
Leong, ESP ;
Li, HD ;
Hng, HH .
SMALL, 2005, 1 (10) :956-959
[7]   Electrically pumped random lasers fabricated from ZnO nanowire arrays [J].
Liu, Xing-Yu ;
Shan, Chong-Xin ;
Wang, Shuang-Peng ;
Zhang, Zhen-Zhong ;
Shen, De-Zhen .
NANOSCALE, 2012, 4 (09) :2843-2846
[8]   Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles [J].
Meng, Xiangeng ;
Fujita, Koji ;
Murai, Shunsuke ;
Matoba, Tomohiko ;
Tanaka, Katsuhisa .
NANO LETTERS, 2011, 11 (03) :1374-1378
[9]   Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles [J].
Meng, Xiangeng ;
Fujita, Koji ;
Zong, Yanhua ;
Murai, Shunsuke ;
Tanaka, Katsuhisa .
APPLIED PHYSICS LETTERS, 2008, 92 (20)
[10]   Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength [J].
Popov, O. ;
Zilbershtein, A. ;
Davidov, D. .
APPLIED PHYSICS LETTERS, 2006, 89 (19)