Quantitative computed tomography and machine learning: recent data in fibrotic interstitial lung disease and potential role in pulmonary sarcoidosis

被引:4
作者
Wells, Athol U. [1 ]
Walsh, Simon L. F. [2 ]
机构
[1] Royal Brompton Hosp, Sydney St, London SW3 6HP, England
[2] Imperial Coll, London, England
关键词
deep learning; imaging; interstitial lung disease; pulmonary sarcoidosis; quantitative computed tomography; FIBROSIS; PATTERNS; CT; SCLERODERMA;
D O I
10.1097/MCP.0000000000000902
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Purpose of review The aim of this study was to summarize quantitative computed tomography (CT) and machine learning data in fibrotic lung disease and to explore the potential application of these technologies in pulmonary sarcoidosis. Recent findings Recent data in the use of quantitative CT in fibrotic interstitial lung disease (ILD) are covered. Machine learning includes deep learning, a branch of machine learning particularly suited to medical imaging analysis. Deep learning imaging biomarker research in ILD is currently undergoing accelerated development, driven by technological advances in image processing and analysis. Fundamental concepts and goals related to deep learning imaging research in ILD are discussed. Recent work highlighted in this review has been performed in patients with idiopathic pulmonary fibrosis (IPF). Quantitative CT and deep learning have not been applied to pulmonary sarcoidosis, although there are recent deep learning data in cardiac sarcoidosis. Pulmonary sarcoidosis presents unsolved problems for which quantitative CT and deep learning may provide unique solutions: in particular, the exploration of the long-standing question of whether sarcoidosis should be viewed as a single disease or as an umbrella term for disorders that might usefully be considered as separate diseases.
引用
收藏
页码:492 / 497
页数:6
相关论文
共 35 条
  • [1] End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
    Ardila, Diego
    Kiraly, Atilla P.
    Bharadwaj, Sujeeth
    Choi, Bokyung
    Reicher, Joshua J.
    Peng, Lily
    Tse, Daniel
    Etemadi, Mozziyar
    Ye, Wenxing
    Corrado, Greg
    Naidich, David P.
    Shetty, Shravya
    [J]. NATURE MEDICINE, 2019, 25 (06) : 954 - +
  • [2] Quantitative CT Analysis of Diffuse Lung Disease
    Chen, Alicia
    Karwoski, Ronald A.
    Gierada, David S.
    Bartholmai, Brian J.
    Koo, Chi Wan
    [J]. RADIOGRAPHICS, 2020, 40 (01) : 28 - 43
  • [3] Quantitative CT analysis using functional imaging is superior in describing disease progression in idiopathic pulmonary fibrosis compared to forced vital capacity
    Clukers, J.
    Lanclus, M.
    Mignot, B.
    Van Holsbeke, C.
    Roseman, J.
    Porter, S.
    Gorina, E.
    Kouchakji, E.
    Lipson, K. E.
    De Backer, W.
    De Backer, J.
    [J]. RESPIRATORY RESEARCH, 2018, 19
  • [4] Diagnosis and Detection of Sarcoidosis An Official American Thoracic Society Clinical Practice Guideline
    Crouser, Elliott D.
    Maier, Lisa A.
    Wilson, Kevin C.
    Bonham, Catherine A.
    Morgenthau, Adam S.
    Patterson, Karen C.
    Abston, Eric
    Bernstein, Richard C.
    Blankstein, Ron
    Chen, Edward S.
    Culver, Daniel A.
    Drake, Wonder
    Drent, Marjolein
    Gerke, Alicia K.
    Ghobrial, Michael
    Govender, Praveen
    Hamzeh, Nabeel
    James, W. Ennis
    Judson, Marc A.
    Kellermeyer, Liz
    Knight, Shandra
    Koth, Laura L.
    Poletti, Venerino
    Raman, Subha, V
    Tukey, Melissa H.
    Westney, Gloria E.
    Baughman, Robert P.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201 (08) : E26 - E51
  • [5] Fishman JE, 2019, EUR REV MED PHARMACO, V23, P7568, DOI [10.26355/eurrev_201909_18877, 10.26355/eurrev_201909_18876]
  • [6] Nintedanib in Progressive Fibrosing Interstitial Lung Diseases
    Flaherty, K. R.
    Wells, A. U.
    Cottin, V
    Devaraj, A.
    Walsh, S. L. F.
    Inoue, Y.
    Richeldi, L.
    Kolb, M.
    Tetzlaff, K.
    Stowasser, S.
    Coeck, C.
    Clerisme-Beaty, E.
    Rosenstock, B.
    Quaresma, M.
    Haeufel, T.
    Goeldner, R-G
    Schlenker-Herceg, R.
    Brown, K. K.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (18) : 1718 - 1727
  • [7] Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography
    Gonzalez, German
    Ash, Samuel Y.
    Vegas-Sanchez-Ferrero, Gonzalo
    Onieva, Jorge Onieva
    Rahaghi, Farbod N.
    Ross, James C.
    Diaz, Alejandro
    Estepar, Raul San Jose
    Washko, George R.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197 (02) : 193 - 203
  • [8] CD4+ T cells in the lungs of acute sarcoidosis patients recognize an Aspergillus nidulans epitope
    Greaves, Sarah A.
    Ravindran, Avinash
    Santos, Radleigh G.
    Chen, Lan
    Falta, Michael T.
    Wang, Yang
    Mitchell, Angela M.
    Atif, Shaikh M.
    Mack, Douglas G.
    Tinega, Alex N.
    Maier, Lisa A.
    Dai, Shaodong
    Pinilla, Clemencia
    Grunewald, Johan
    Fontenot, Andrew P.
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2021, 218 (10)
  • [9] Chronic hypersensitivity pneumonitis: identification of key prognostic determinants using automated CT analysis
    Jacob, Joseph
    Bartholmai, Brian J.
    Egashira, Ryoko
    Brun, Anne Laure
    Rajagopalan, Srinivasan
    Karwoski, Ronald
    Kokosi, Maria
    Hansell, David M.
    Wells, Athol U.
    [J]. BMC PULMONARY MEDICINE, 2017, 17
  • [10] Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures
    Jacob, Joseph
    Bartholmai, Brian J.
    Rajagopalan, Srinivasan
    Kokosi, Maria
    Nair, Arjun
    Karwoski, Ronald
    Walsh, Simon L. F.
    Wells, Athol U.
    Hansell, David M.
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2017, 49 (01)