Active Learning of Instance-level Constraints for Semi-supervised Document Clustering

被引:0
作者
Zhao, Weizhong [1 ]
He, Qing [1 ]
Ma, Huifang [1 ]
Shi, Zhongzhi [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
来源
2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1 | 2009年
关键词
Semi-supervised Clustering; Document Clustering; Active Learning; Instance-level Constraint;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a framework that actively selects informative documents pairs for semi-supervised document clustering. The semi-supervised document clustering algorithm is a Constrained DBSCAN (Cons-DBSCAN), which incorporates instance-level constraints to guide the clustering process in DBSCAN. By obtaining user feedbacks, our proposed active learning algorithm can get informative instance-level constraints to aid clustering process. Experimental results show that Cons-DBSCAN with the proposed active learning approach can provide an appealing clustering performance.
引用
收藏
页码:264 / 268
页数:5
相关论文
共 13 条
  • [1] [Anonymous], P 10 EUR C PRINC PRA
  • [2] Basu S, 2004, SIAM PROC S, P333
  • [3] Ester M., 1996, KDD, V96, P226, DOI DOI 10.5555/3001460.3001507
  • [4] Huang RZ, 2007, PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, P113
  • [5] An active learning framework for semi-supervised document clustering with language modeling
    Huang, Ruizhang
    Lam, Wai
    [J]. DATA & KNOWLEDGE ENGINEERING, 2009, 68 (01) : 49 - 67
  • [6] Raghavan H, 2006, J MACH LEARN RES, V7, P1655
  • [7] Roy N., 2001, ICML Williamstown
  • [8] Schon Greg, 2000, P 17 INT C MACHINE L, P839
  • [9] Strehl A., 2000, P AAAI 2000 WORKSHOP, P58
  • [10] Sugiyama M, 2006, J MACH LEARN RES, V7, P141