Fast Inference in Nonlinear Dynamical Systems using Gradient Matching

被引:0
|
作者
Niu, Mu [1 ]
Rogers, Simon [2 ]
Filippone, Maurizio [3 ]
Husmeier, Dirk [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland
[2] Univ Glasgow, Dept Comp Sci, Glasgow, Lanark, Scotland
[3] Eurecom, Biot, France
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48 | 2016年 / 48卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parameter inference in mechanistic models of coupled differential equations is a topical problem. We propose a new method based on kernel ridge regression and gradient matching, and an objective function that simultaneously encourages goodness of fit and penalises inconsistencies with the differential equations. Fast minimisation is achieved by exploiting partial convexity inherent in this function, and setting up an iterative algorithm in the vein of the EM algorithm. An evaluation of the proposed method on various benchmark data suggests that it compares favourably with state-of-the-art alternatives.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] From Birdsong to Human Speech Recognition: Bayesian Inference on a Hierarchy of Nonlinear Dynamical Systems
    Yildiz, Izzet B.
    von Kriegstein, Katharina
    Kiebel, Stefan J.
    PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
  • [32] Estimating nonlinear interdependences in dynamical systems using cellular nonlinear networks
    Krug, Dieter
    Osterhage, Hannes
    Elger, Christian E.
    Lehnertz, Klaus
    PHYSICAL REVIEW E, 2007, 76 (04)
  • [33] Gradient Matching Methods for Computational Inference in Mechanistic Models for Systems Biology: A Review and Comparative Analysis
    Macdonald, Benn
    Husmeier, Dirk
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2015, 3
  • [34] Scalable Inference of Neural Dynamical Systems
    Fletcher, Alyson K.
    2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 1466 - 1469
  • [35] Statistical inference for dynamical systems: A review
    McGoff, Kevin
    Mukherjee, Sayan
    Pillai, Natesh
    STATISTICS SURVEYS, 2015, 9 : 209 - 252
  • [36] Learning nonlinear dynamical systems using an EM algorithm
    Ghahramani, Z
    Roweis, ST
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 431 - 437
  • [37] Decomposition of Nonlinear Dynamical Systems Using Koopman Gramians
    Liu, Zhiyuan
    Kundu, Soumya
    Chen, Lijun
    Yeung, Enoch
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 4811 - 4818
  • [38] Scalable Variational Inference for Dynamical Systems
    Gorbach, Nico S.
    Bauer, Stefan
    Buhmann, Joachim M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [39] Using SVM to model and control nonlinear dynamical systems
    Zhang, Haoran
    Wang, Xiaodong
    Zhang, Changjiang
    Wang, Jin
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2912 - 2915
  • [40] Targeting of chaotic dynamical systems using nonlinear approximations
    Hill, DL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (06): : 1385 - 1393