Fast Inference in Nonlinear Dynamical Systems using Gradient Matching

被引:0
|
作者
Niu, Mu [1 ]
Rogers, Simon [2 ]
Filippone, Maurizio [3 ]
Husmeier, Dirk [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland
[2] Univ Glasgow, Dept Comp Sci, Glasgow, Lanark, Scotland
[3] Eurecom, Biot, France
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48 | 2016年 / 48卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parameter inference in mechanistic models of coupled differential equations is a topical problem. We propose a new method based on kernel ridge regression and gradient matching, and an objective function that simultaneously encourages goodness of fit and penalises inconsistencies with the differential equations. Fast minimisation is achieved by exploiting partial convexity inherent in this function, and setting up an iterative algorithm in the vein of the EM algorithm. An evaluation of the proposed method on various benchmark data suggests that it compares favourably with state-of-the-art alternatives.
引用
收藏
页数:9
相关论文
共 50 条