Fast Inference in Nonlinear Dynamical Systems using Gradient Matching

被引:0
|
作者
Niu, Mu [1 ]
Rogers, Simon [2 ]
Filippone, Maurizio [3 ]
Husmeier, Dirk [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland
[2] Univ Glasgow, Dept Comp Sci, Glasgow, Lanark, Scotland
[3] Eurecom, Biot, France
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48 | 2016年 / 48卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parameter inference in mechanistic models of coupled differential equations is a topical problem. We propose a new method based on kernel ridge regression and gradient matching, and an objective function that simultaneously encourages goodness of fit and penalises inconsistencies with the differential equations. Fast minimisation is achieved by exploiting partial convexity inherent in this function, and setting up an iterative algorithm in the vein of the EM algorithm. An evaluation of the proposed method on various benchmark data suggests that it compares favourably with state-of-the-art alternatives.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] R package for statistical inference in dynamical systems using kernel based gradient matching: KGode
    Mu Niu
    Joe Wandy
    Rónán Daly
    Simon Rogers
    Dirk Husmeier
    Computational Statistics, 2021, 36 : 715 - 747
  • [2] R package for statistical inference in dynamical systems using kernel based gradient matching: KGode
    Niu, Mu
    Wandy, Joe
    Daly, Ronon
    Rogers, Simon
    Husmeier, Dirk
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 715 - 747
  • [3] Inference for nonlinear dynamical systems
    Ionides, E. L.
    Breto, C.
    King, A. A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (49) : 18438 - 18443
  • [4] Fast diffeomorphic matching to learn globally asymptotically stable nonlinear dynamical systems
    Perrin, Nicolas
    Schlehuber-Caissier, Philipp
    SYSTEMS & CONTROL LETTERS, 2016, 96 : 51 - 59
  • [5] Novel approximations for inference in nonlinear dynamical systems using expectation propagation
    Ypma, A
    Heskes, T
    NEUROCOMPUTING, 2005, 69 (1-3) : 85 - 99
  • [6] Parameter and structure inference for nonlinear dynamical systems
    Morris, RD
    Smelyanskiy, VN
    Millonas, M
    Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2005, 803 : 112 - 120
  • [7] Approximate parameter inference in systems biology using gradient matching: a comparative evaluation
    Benn Macdonald
    Mu Niu
    Simon Rogers
    Maurizio Filippone
    Dirk Husmeier
    BioMedical Engineering OnLine, 15
  • [8] Approximate parameter inference in systems biology using gradient matching: a comparative evaluation
    Macdonald, Benn
    Niu, Mu
    Rogers, Simon
    Filippone, Maurizio
    Husmeier, Dirk
    BIOMEDICAL ENGINEERING ONLINE, 2016, 15
  • [9] Fast Gaussian process based gradient matching for parameter identification in systems of nonlinear ODES
    Wenk, Philippe
    Gorbach, Nico S.
    Gotovos, Alkis
    Krause, Andreas
    Bauer, Stefan
    Buhmann, Joachim M.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [10] Collapsed amortized variational inference for switching nonlinear dynamical systems
    Dong, Zhe
    Seybold, Bryan A.
    Murphy, Kevin P.
    Bui, Hung H.
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,