Numerical methods for differential linear matrix equations via Krylov subspace methods

被引:2
作者
Hached, M. [1 ]
Jbilou, K. [2 ]
机构
[1] Univ Lille, UFR Math, Lab P Painleve UMR 8524, IUT A, Rue Rech,BP 179, F-59653 Villeneuve Dascq, France
[2] Univ Littoral Cote dOpale, Lab Math Pures & Appliquees, 50 Rue F Buisson,BP 699, F-62228 Calais, France
关键词
Sylvester equation; Lyapunov equation; Global Arnoldi; Matrix Krylov subspace; APPROXIMATIONS; ALGORITHMS;
D O I
10.1016/j.cam.2019.112674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we present some numerical methods for computing approximate solutions to some large differential linear matrix equations. In the first part of this work, we deal with differential generalized Sylvester matrix equations with full rank right-hand sides using a global Galerkin and a norm-minimization approaches. In the second part, we consider large differential Lyapunov matrix equations with low rank right-hand sides and use the extended global Arnoldi process to produce low rank approximate solutions. We give some theoretical results and present some numerical examples. (C) 2019 Published by Elsevier B.V.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] ANALYSIS OF THE RATIONAL KRYLOV SUBSPACE AND ADI METHODS FOR SOLVING THE LYAPUNOV EQUATION
    Druskin, V.
    Knizhnerman, L.
    Simoncini, V.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 1875 - 1898
  • [23] Recent advances in numerical methods for partial fractional differential equations
    Podlubny, Igor
    Skovranek, Tomas
    Datsko, Bohdan
    2014 15TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2014, : 454 - 457
  • [24] NUMERICAL METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS BASED ON GAUSSIAN MIXTURE
    Li, Lei
    Lu, Jianfeng
    Mattingly, Jonathan C.
    Wang, Lihan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (06) : 1549 - 1577
  • [25] A study on spectral methods for linear and nonlinear fractional differential equations
    Behroozifar, Mahmoud
    Ahmadpour, Farkhondeh
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2019, 10 (06) : 545 - 556
  • [26] RBF approximation of three dimensional PDEs using tensor Krylov subspace methods
    El Guide, M.
    Jbilou, K.
    Ratnani, A.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 139 : 77 - 85
  • [27] Model Checking Markov Chains Using Krylov Subspace Methods: An Experience Report
    Dulat, Falko
    Katoen, Joost-Pieter
    Nguyen, Viet Yen
    COMPUTER PERFORMANCE ENGINEERING, 2010, 6342 : 115 - 130
  • [28] DEFLATED AND AUGMENTED KRYLOV SUBSPACE METHODS: A FRAMEWORK FOR DEFLATED BICG AND RELATED SOLVERS
    Gutknecht, Martin H.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) : 1444 - 1466
  • [29] LOW-RANK UPDATES OF MATRIX FUNCTIONS II: RATIONAL KRYLOV METHODS
    Beckermann, Bernhard
    Cortinovis, Alice
    Kressner, Daniel
    Schweitzer, Marcel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1325 - 1347
  • [30] Randomized block Krylov subspace methods for trace and log-determinant estimators
    Li, Hanyu
    Zhu, Yuanyang
    BIT NUMERICAL MATHEMATICS, 2021, 61 (03) : 911 - 939