Model predictive temperature tracking in crystal growth processes

被引:9
作者
Abdollahi, Javad [1 ]
Izadi, Mojtaba [1 ]
Dubljevic, Stevan [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Parabolic partial differential equation; Moving boundary domain; Czochralski crystal growth; Model predictive control; Reference trajectory tracking; CZOCHRALSKI PROCESS; DYNAMICS; RECONSTRUCTION;
D O I
10.1016/j.compchemeng.2014.09.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The temperature gradients and distribution evolution within the crystal domain in Czochralski crystal growth process have important role in produced crystal's quality. Precise and tight regulation of temperature distribution and gradients is the most promising approach to ensure the crystal quality. In this work, the coupled crystal pulling dynamics and heat transfer models in Czochralski crystal growth with a time-varying boundary is considered. The moving boundary finite element method is used to obtain the optimal reference temperature trajectory associated with the reference crystal shape taking into account constraints on input and the temperature gradients. The obtained reference trajectory is used to implement a model predictive control strategy to track the reference temperature despite uncertainties in crystal domain geometry evolution and disturbances. Finally, the proposed method is implemented on a high fidelity finite element process model with non-planar interface and results are presented to validate the success of the proposed methodology. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 23 条
[1]   Temperature Distribution Reconstruction in Czochralski Crystal Growth Process [J].
Abdollahi, Javad ;
Izadi, Mojtaba ;
Dubljevic, Stevan .
AICHE JOURNAL, 2014, 60 (08) :2839-2852
[2]  
Abdollahi J, 2013, P AMER CONTR CONF, P1626
[3]   Crystal temperature control in the Czochralski crystal growth process [J].
Armaou, A ;
Christofides, PD .
AICHE JOURNAL, 2001, 47 (01) :79-106
[4]   Robust control of parabolic PDE systems with time-dependent spatial domains [J].
Armaou, A ;
Christofides, PD .
AUTOMATICA, 2001, 37 (01) :61-69
[5]   Simulation aided hot zone design for faster growth of CZ silicon mono crystals [J].
Cao Jianwei ;
Gao Yu ;
Chen Ying ;
Zhang Guohu ;
Qiu Minxiu .
RARE METALS, 2011, 30 (02) :155-159
[6]   3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth [J].
Demina, S. E. ;
Kalaev, V. V. .
JOURNAL OF CRYSTAL GROWTH, 2011, 320 (01) :23-27
[7]   ON THE DYNAMICS OF CZOCHRALSKI CRYSTAL-GROWTH [J].
DERBY, JJ ;
BROWN, RA .
JOURNAL OF CRYSTAL GROWTH, 1987, 83 (01) :137-151
[8]   Optimization of the cooling profile to achieve crack-free Yb:S-FAP crystals [J].
Fang, H. S. ;
Qiu, S. R. ;
Zheng, L. L. ;
Schaffers, K. I. ;
Tassano, J. B. ;
Caird, J. A. ;
Zhang, H. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (16) :3825-3832
[9]   DYNAMICS AND CONTROL OF THE CZOCHRALSKI PROCESS .3. INTERFACE DYNAMICS AND CONTROL REQUIREMENTS [J].
GEVELBER, MA .
JOURNAL OF CRYSTAL GROWTH, 1994, 139 (3-4) :271-285
[10]   DYNAMICS AND CONTROL OF THE CZOCHRALSKI PROCESS .1. MODELING AND DYNAMIC CHARACTERIZATION [J].
GEVELBER, MA ;
STEPHANOPOULOS, G .
JOURNAL OF CRYSTAL GROWTH, 1987, 84 (04) :647-668