A Performance Comparison of Euclidean, Manhattan and Minkowski Distances in K-Means Clustering

被引:0
|
作者
Haviluddin [1 ]
Iqbal, Muhammad [1 ]
Putra, Gubtha Mahendra [1 ]
Puspitasari, Novianti [1 ]
Setyadi, Hario Jati [1 ]
Dwiyanto, Felix Andika [2 ]
Wibawa, Aji Prasetya [3 ]
Alfred, Rayner [4 ]
机构
[1] Univ Mulawarman, Dept Informat, Samarinda, Indonesia
[2] Univ Negeri Malang, Grad Sch, Malang, Indonesia
[3] Univ Negeri Malang, Dept Elect Engn, Malang, Indonesia
[4] Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu, Sabah, Malaysia
来源
2020 6TH INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0: TOWARDS INNOVATION IN DISASTER MANAGEMENT | 2020年
关键词
crime; clustering; K-Means; Euclidian distance; Manhattan distance; Minkowski distance; SSE;
D O I
10.1109/ICSITech49800.2020.9392053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Indonesian police department has a role in maintaining security and law enforcement under the Republic of Indonesia Law Number 2 of 2002. In this study, data on the crime rate in the Bontang City area has been analyzed. It becomes the basis for the Police in anticipating various crimes. The K-Means algorithm is used for data analysis. Based on the test results, there are three levels of crime: high, medium, and low. According to the analysis, the high crime rate in the Bontang City area is special case theft and vehicle theft. Furthermore, it becomes the police program to maintain personal and vehicle safety.
引用
收藏
页码:184 / 188
页数:5
相关论文
共 50 条
  • [41] A k-means approach to clustering disease progressions
    Duc Thanh Anh Luong
    Chandola, Varun
    2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2017, : 268 - 274
  • [42] A Novel MapReduce Based k-Means Clustering
    Sinha, Ankita
    Jana, Prasanta K.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND COMMUNICATION, 2017, 458 : 247 - 255
  • [43] Seeding on Samples for Accelerating K-Means Clustering
    Low, Jia Shun
    Ghafoori, Zahra
    Bezdek, James C.
    Leckie, Christopher
    3RD INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS (BDIOT 2019), 2018, : 41 - 45
  • [44] Locality Preserving Based K-Means Clustering
    Yang, Xiaohuan
    Wang, Xiaoming
    Tian, Yong
    Du, Yajun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 86 - 95
  • [45] Stable Initialization Scheme for K-Means Clustering
    XU Junling1
    2. State Key Laboratory of Software Engineering
    3. Department of Computer
    WuhanUniversityJournalofNaturalSciences, 2009, 14 (01) : 24 - 28
  • [46] Mahalanobis Distance Based K-Means Clustering
    Brown, Paul O.
    Chiang, Meng Ching
    Guo, Shiqing
    Jin, Yingzi
    Leung, Carson K.
    Murray, Evan L.
    Pazdor, Adam G. M.
    Cuzzocrea, Alfredo
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2022, 2022, 13428 : 256 - 262
  • [47] Strong Consistency of Reduced K-means Clustering
    Terada, Yoshikazu
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 913 - 931
  • [48] K-means*: Clustering by gradual data transformation
    Malinen, Mikko I.
    Mariescu-Istodor, Radu
    Franti, Pasi
    PATTERN RECOGNITION, 2014, 47 (10) : 3376 - 3386
  • [49] Offenders Clustering Using FCM & K-Means
    Farzai, Sara
    Ghasemi, Davood
    Marzuni, Seyed Saeed Mirpour
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2015, 15 (04): : 294 - 301
  • [50] K-means clustering algorithm in projected spaces
    Nasser, Alissar
    Hamad, Denis
    Nasr, Chaiban
    2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 1260 - 1265