A Performance Comparison of Euclidean, Manhattan and Minkowski Distances in K-Means Clustering

被引:0
|
作者
Haviluddin [1 ]
Iqbal, Muhammad [1 ]
Putra, Gubtha Mahendra [1 ]
Puspitasari, Novianti [1 ]
Setyadi, Hario Jati [1 ]
Dwiyanto, Felix Andika [2 ]
Wibawa, Aji Prasetya [3 ]
Alfred, Rayner [4 ]
机构
[1] Univ Mulawarman, Dept Informat, Samarinda, Indonesia
[2] Univ Negeri Malang, Grad Sch, Malang, Indonesia
[3] Univ Negeri Malang, Dept Elect Engn, Malang, Indonesia
[4] Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu, Sabah, Malaysia
来源
2020 6TH INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0: TOWARDS INNOVATION IN DISASTER MANAGEMENT | 2020年
关键词
crime; clustering; K-Means; Euclidian distance; Manhattan distance; Minkowski distance; SSE;
D O I
10.1109/ICSITech49800.2020.9392053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Indonesian police department has a role in maintaining security and law enforcement under the Republic of Indonesia Law Number 2 of 2002. In this study, data on the crime rate in the Bontang City area has been analyzed. It becomes the basis for the Police in anticipating various crimes. The K-Means algorithm is used for data analysis. Based on the test results, there are three levels of crime: high, medium, and low. According to the analysis, the high crime rate in the Bontang City area is special case theft and vehicle theft. Furthermore, it becomes the police program to maintain personal and vehicle safety.
引用
收藏
页码:184 / 188
页数:5
相关论文
共 50 条
  • [21] Locally Private k-Means Clustering
    Stemmer, Uri
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [22] The validity of pyramid K-means clustering
    Tamir, Dan E.
    Park, Chi-Yeon
    Yoo, Wook-Sung
    MATHEMATICS OF DATA/IMAGE PATTERN RECOGNITION, COMPRESSION, CODING, AND ENCRYPTION X, WITH APPLICATIONS, 2007, 6700
  • [23] Improved Algorithm for the k-means Clustering
    Zhang, Sheng
    Wang, Shouqiang
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4717 - 4720
  • [24] Adaptive K-Means clustering algorithm
    Chen, Hailin
    Wu, Xiuqing
    Hu, Junhua
    MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [25] An Enhancement of K-means Clustering Algorithm
    Gu, Jirong
    Zhou, Jieming
    Chen, Xianwei
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 237 - 240
  • [26] Clique partitioning for clustering:: A comparison with K-means and latent class analysis
    Wang, Haibo
    Obremski, Tom
    Alidaee, Bahram
    Kochenberger, Gary
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (01) : 1 - 13
  • [27] Performance Analysis of Parallel K-Means with Optimization Algorithms for Clustering on Spark
    Santhi, V.
    Jose, Rini
    DISTRIBUTED COMPUTING AND INTERNET TECHNOLOGY (ICDCIT 2018), 2018, 10722 : 158 - 162
  • [28] An Analysis of Students' Academic Performance Using K-Means Clustering Algorithm
    Ahmad, Maryam
    Arshad, Noreen Izza Bt
    Sarlan, Aliza Bt
    ADVANCES ON INTELLIGENT INFORMATICS AND COMPUTING: HEALTH INFORMATICS, INTELLIGENT SYSTEMS, DATA SCIENCE AND SMART COMPUTING, 2022, 127 : 309 - 318
  • [29] Selection of K in K-means clustering
    Pham, DT
    Dimov, SS
    Nguyen, CD
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2005, 219 (01) : 103 - 119
  • [30] Comparison between K-Means and K-Medoids Clustering Algorithms
    Madhulatha, Tagaram Soni
    ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, 2011, 198 : 472 - 481