Numerical study on the dynamic behavior of multiple rising bubbles using the lattice Boltzmann method

被引:1
作者
Jeong, Namgyun [1 ]
机构
[1] Inha Tech Coll, Mech Engn, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
Mutiphase flow; Rising bubble; Lattice Boltzmann method; Free energy; MODEL; SIMULATIONS; VOLUME; FLOWS; GAS;
D O I
10.1007/s12206-019-1016-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
For numerical analysis of multiphase flow, each interface boundary should be captured, and the geometric deformation of the interface needs to be predicted. To predict the interface, the singular interface model and diffusion interface model can be used. Among them, free energy based lattice Boltzmann method has adopted the diffusion interface model, with which it is easy to simulate complex multiphase flow phenomena such as bubble collapse, droplet collision, and moving contact lines. A new lattice Boltzmann method for the simulation of multiphase flows is described, and test results for the validation are presented. Finally, some simulations were carried out for the investigation of dynamic behavior of multiple rising bubbles.
引用
收藏
页码:5251 / 5260
页数:10
相关论文
共 19 条
[1]   BUBBLES IN VISCOUS-LIQUIDS - SHAPES, WAKES AND VELOCITIES [J].
BHAGA, D ;
WEBER, ME .
JOURNAL OF FLUID MECHANICS, 1981, 105 (APR) :61-85
[2]   Lattice Boltzmann simulations of contact line motion. II. Binary fluids [J].
Briant, AJ ;
Yeomans, JM .
PHYSICAL REVIEW E, 2004, 69 (03) :9
[3]  
Collier J.G., 1996, CONVECTIVE BOILING C, V3rd
[4]   A LATTICE BOLTZMANN MODEL FOR MULTIPHASE FLUID-FLOWS [J].
GRUNAU, D ;
CHEN, SY ;
EGGERT, K .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (10) :2557-2562
[5]   LATTICE BOLTZMANN MODEL OF IMMISCIBLE FLUIDS [J].
GUNSTENSEN, AK ;
ROTHMAN, DH ;
ZALESKI, S ;
ZANETTI, G .
PHYSICAL REVIEW A, 1991, 43 (08) :4320-4327
[6]  
Gyun jeong Nam, 2019, [Korean Society of Computatuonal Fluids Engineering, 한국전산유체공학회지], V24, P69, DOI 10.6112/kscfe.2019.24.2.069
[7]   A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability [J].
He, XY ;
Chen, SY ;
Zhang, RY .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) :642-663
[8]   VOLUME OF FLUID (VOF) METHOD FOR THE DYNAMICS OF FREE BOUNDARIES [J].
HIRT, CW ;
NICHOLS, BD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (01) :201-225
[9]   Mobility-dependent bifurcations in capillarity-driven two-phase fluid systems by using a lattice Boltzmann phase-field model [J].
Huang, J. J. ;
Shu, C. ;
Chew, Y. T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 60 (02) :203-225
[10]   Quantitative benchmark computations of two-dimensional bubble dynamics [J].
Hysing, S. ;
Turek, S. ;
Kuzmin, D. ;
Parolini, N. ;
Burman, E. ;
Ganesan, S. ;
Tobiska, L. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 60 (11) :1259-1288