Entanglement scaling in two-dimensional gapless systems

被引:45
作者
Ju, Hyejin [1 ]
Kallin, Ann B. [2 ]
Fendley, Paul [3 ,4 ]
Hastings, Matthew B. [4 ]
Melko, Roger G. [2 ,5 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[4] Univ Calif Santa Barbara, Microsoft Res, Stn Q, Santa Barbara, CA 93106 USA
[5] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 16期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
ENTROPY; DIMENSIONS;
D O I
10.1103/PhysRevB.85.165121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We numerically determine subleading scaling terms in the ground-state entanglement entropy of several two-dimensional (2D) gapless systems, including a Heisenberg model with Neel order, a free Dirac fermion in the pi-flux phase, and the nearest-neighbor resonating-valence-bond wave function. For these models, we show that the entanglement entropy between cylindrical regions of length x and L - x, extending around a torus of length L, depends on the dimensionless ratio x/L. This can be well approximated on finite-size lattices by a function ln (sin(pi x/L)), akin to the familiar chord-length dependence in one dimension. We provide evidence, however, that the precise form of this bulk-dependent contribution is a more general function in the 2D thermodynamic limit.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Critical correlations for short-range valence-bond wave functions on the square lattice [J].
Albuquerque, A. Fabricio ;
Alet, Fabien .
PHYSICAL REVIEW B, 2010, 82 (18)
[2]  
[Anonymous], 2011, ARXIV11125166
[3]  
[Anonymous], ARXIV11073987
[4]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[5]   Entanglement entropy and conformal field theory [J].
Calabrese, Pasquale ;
Cardy, John .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[6]   Spin Hamiltonians with Resonating-Valence-Bond Ground States [J].
Cano, Jennifer ;
Fendley, Paul .
PHYSICAL REVIEW LETTERS, 2010, 105 (06)
[7]   IS THERE A C-THEOREM IN 4 DIMENSIONS [J].
CARDY, JL .
PHYSICS LETTERS B, 1988, 215 (04) :749-752
[8]   The ubiquitous 'c': from the Stefan-Boltzmann law to quantum information [J].
Cardy, John .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[9]   Universal terms for the entanglement entropy in 2+1 dimensions [J].
Casini, H. ;
Huerta, M. .
NUCLEAR PHYSICS B, 2007, 764 (03) :183-201
[10]   Colloquium: Area laws for the entanglement entropy [J].
Eisert, J. ;
Cramer, M. ;
Plenio, M. B. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (01) :277-306