EXACT SPECTRAL ASYMPTOTICS ON THE SIERPINSKI GASKET

被引:6
作者
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Sierpinski gasket; Laplacians on fractals; spectral asymptotics; SELF-SIMILAR SETS; FRACTALS; LAPLACIANS;
D O I
10.1090/S0002-9939-2011-11309-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the ways that analysis on fractals is more complicated than analysis on manifolds is that the asymptotic behavior of the spectral counting function N(t) has a power law modulated by a nonconstant multiplicatively periodic function. Nevertheless, we show that for the Sierpinski gasket it is possible to write an exact formula, with no remainder term, valid for almost every t. This is a stronger result than is valid on manifolds.
引用
收藏
页码:1749 / 1755
页数:7
相关论文
共 50 条
[31]   BOUNDED VARIATION ON THE SIERPINSKI GASKET [J].
Verma, S. ;
Sahu, A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
[32]   A TRACE THEOREM FOR SOBOLEV SPACES ON THE SIERPINSKI GASKET [J].
Cao, Shiping ;
Li, Shuangping ;
Strichartz, Robert S. ;
Talwai, Prem .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) :3901-3916
[33]   ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK [J].
Chen, Jin ;
He, Long ;
Wang, Qin .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
[34]   Martin boundary and exit space on the Sierpinski gasket [J].
Lau Ka-Sing ;
Ngai Sze-Man .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (03) :475-494
[35]   Spanning trees on the Sierpinski gasket [J].
Chang, Shu-Chiuan ;
Chen, Lung-Chi ;
Yang, Wei-Shih .
JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) :649-667
[36]   Orthogonal Polynomials on the Sierpinski Gasket [J].
Kasso A. Okoudjou ;
Robert S. Strichartz ;
Elizabeth K. Tuley .
Constructive Approximation, 2013, 37 :311-340
[37]   Restrictions of Laplacian Eigenfunctions to Edges in the Sierpinski Gasket [J].
Qiu, Hua ;
Tian, Haoran .
CONSTRUCTIVE APPROXIMATION, 2019, 50 (02) :243-269
[38]   AVERAGE GEODESIC DISTANCE OF SIERPINSKI GASKET AND SIERPINSKI NETWORKS [J].
Wang, Songjing ;
Yu, Zhouyu ;
Xi, Lifeng .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (05)
[39]   Orthogonal Polynomials on the Sierpinski Gasket [J].
Okoudjou, Kasso A. ;
Strichartz, Robert S. ;
Tuley, Elizabeth K. .
CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) :311-340
[40]   Fractal functions on the Sierpinski Gasket [J].
Ri, SongIl .
CHAOS SOLITONS & FRACTALS, 2020, 138