EXACT SPECTRAL ASYMPTOTICS ON THE SIERPINSKI GASKET

被引:6
作者
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Sierpinski gasket; Laplacians on fractals; spectral asymptotics; SELF-SIMILAR SETS; FRACTALS; LAPLACIANS;
D O I
10.1090/S0002-9939-2011-11309-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the ways that analysis on fractals is more complicated than analysis on manifolds is that the asymptotic behavior of the spectral counting function N(t) has a power law modulated by a nonconstant multiplicatively periodic function. Nevertheless, we show that for the Sierpinski gasket it is possible to write an exact formula, with no remainder term, valid for almost every t. This is a stronger result than is valid on manifolds.
引用
收藏
页码:1749 / 1755
页数:7
相关论文
共 50 条
[21]   OPTIMIZATION PROBLEMS ON THE SIERPINSKI GASKET [J].
Galewski, Marek .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[22]   Extensions and their Minimizations on the Sierpinski Gasket [J].
Li, Pak-Hin ;
Ryder, Nicholas ;
Strichartz, Robert S. ;
Ugurcan, Baris Evren .
POTENTIAL ANALYSIS, 2014, 41 (04) :1167-1201
[23]   Exact partition function of the Potts model on the Sierpinski gasket and the Hanoi lattice [J].
Alvarez, P. D. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (08)
[24]   Some Properties of the Derivatives on Sierpinski Gasket Type Fractals [J].
Cao, Shiping ;
Qiu, Hua .
CONSTRUCTIVE APPROXIMATION, 2017, 46 (02) :319-347
[25]   GEODESICS OF THE SIERPINSKI GASKET [J].
Saltan, Mustafa ;
Ozdemir, Yunus ;
Demir, Bunyamin .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
[26]   Sandpiles on a Sierpinski gasket [J].
Daerden, F ;
Vanderzande, C .
PHYSICA A, 1998, 256 (3-4) :533-546
[27]   Minimal Gap in the Spectrum of the Sierpinski Gasket [J].
Ruiz, Patricia Alonso .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (23) :18874-18894
[28]   On the fundamental group of the Sierpinski-gasket [J].
Akiyama, S. ;
Dorfer, G. ;
Thuswaldner, J. M. ;
Winkler, R. .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (09) :1655-1672
[29]   Restrictions of Laplacian Eigenfunctions to Edges in the Sierpinski Gasket [J].
Hua Qiu ;
Haoran Tian .
Constructive Approximation, 2019, 50 :243-269
[30]   Dimer coverings on the sierpinski gasket [J].
Chang, Shu-Chiuan ;
Chen, Lung-Chi .
JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) :631-650