EXACT SPECTRAL ASYMPTOTICS ON THE SIERPINSKI GASKET

被引:5
|
作者
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Sierpinski gasket; Laplacians on fractals; spectral asymptotics; SELF-SIMILAR SETS; FRACTALS; LAPLACIANS;
D O I
10.1090/S0002-9939-2011-11309-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the ways that analysis on fractals is more complicated than analysis on manifolds is that the asymptotic behavior of the spectral counting function N(t) has a power law modulated by a nonconstant multiplicatively periodic function. Nevertheless, we show that for the Sierpinski gasket it is possible to write an exact formula, with no remainder term, valid for almost every t. This is a stronger result than is valid on manifolds.
引用
收藏
页码:1749 / 1755
页数:7
相关论文
共 50 条
  • [1] Spectral operators on the Sierpinski gasket I
    Allan, Adam
    Barany, Michael
    Strichartz, Robert S.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (06) : 521 - 543
  • [2] Spectral triples for the Sierpinski gasket
    Cipriani, Fabio
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 4809 - 4869
  • [3] Heat Kernel Asymptotics for the Measurable Riemannian Structure on the Sierpinski Gasket
    Kajino, Naotaka
    POTENTIAL ANALYSIS, 2012, 36 (01) : 67 - 115
  • [4] Asymptotics of eigenvalue clusters for Schrodinger operators on the Sierpinski gasket
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) : 2453 - 2459
  • [5] Spectral asymptotics for V-variable Sierpinski gaskets
    Freiberg, U.
    Hambly, B. M.
    Hutchinson, John E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 2162 - 2213
  • [6] Spectral triples for the variants of the Sierpinski gasket
    Rivera, Andrea Arauza
    JOURNAL OF FRACTAL GEOMETRY, 2019, 6 (03) : 205 - 246
  • [7] Exact spectrum of the Laplacian on a domain in the Sierpinski gasket
    Qiu, Hua
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (03) : 806 - 888
  • [8] Heat Kernel Asymptotics for the Measurable Riemannian Structure on the Sierpinski Gasket
    Naotaka Kajino
    Potential Analysis, 2012, 36 : 67 - 115
  • [9] MAGNETIC LAPLACIANS OF LOCALLY EXACT FORMS ON THE SIERPINSKI GASKET
    Hyde, Jessica
    Kelleher, Daniel
    Moeller, Jesse
    Rogers, Luke
    Seda, Luis
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (06) : 2299 - 2319
  • [10] The exact number of orthogonal exponentials on the spatial Sierpinski gasket
    Wang, Qi
    FORUM MATHEMATICUM, 2021, 33 (05) : 1125 - 1136