Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov's method

被引:54
|
作者
El-Borai, M. M. [1 ]
El-Owaidy, H. M. [2 ]
Ahmed, Hamdy M. [3 ]
Arnous, Ahmed H. [3 ]
Moshokoa, Seithuti [4 ]
Biswas, Anjan [4 ,5 ]
Belic, Milivoj [6 ]
机构
[1] Univ Alexandria, Fac Sci, Dept Math, Qesm Bab Sharqi, Alexandria Gove, Egypt
[2] Al Azhar Univ, Nasr City, Cairo Governora, Egypt
[3] Higher Inst Engn, Dept Engn Math & Phys, 15th Of May City, Cairo Governora, Egypt
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 80203, Saudi Arabia
[6] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2017年 / 128卷
关键词
Solitons; Eckhaus equation; Extended Kudryashov method; NONLINEAR EVOLUTION-EQUATIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION METHOD; OPTICAL SOLITONS; (G'/G)-EXPANSION METHOD; NANO-FIBERS;
D O I
10.1016/j.ijleo.2016.10.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we apply the extended Kudryashov method to a nonlinear Schrodinger type equation called the Kundu-Eckhaus equation or the Eckhaus equation which was independently introduced by Wiktor Eckhaus and by Anjan Kundu in 1984-1985 to model the propagation of waves in dispersive media. The proposed method is direct, effective and takes full advantages of the Bernoulli and Riccati equations to construct new exact solutions of that model and can be extended to many nonlinear evolution equations in mathematical physics. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [21] INTERACTIONS AND OSCILLATIONS OF THREE-SOLITON SOLUTION IN THE VARIABLE-COEFFICIENT KUNDU-ECKHAUS EQUATION FOR DISPERSION MANAGEMENT SYSTEMS
    Yu, Wei-Tian
    Wazwaz, Abdul-Majid
    Zhou, Qin
    Liu, Wen-Jun
    ROMANIAN JOURNAL OF PHYSICS, 2019, 64 (3-4):
  • [22] Optical soliton solutions to the time-fractional Kundu-Eckhaus equation through the (G' /G, 1/G)-expansion technique
    Akbar, M. Ali
    Abdullah, Farah Aini
    Khatun, Mst. Munny
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)
  • [23] Soliton Solutions and Other Solutions for Kundu-Eckhaus Equation with Quintic Nonlinearity and Raman Effect Using the Improved Modified Extended Tanh-Function Method
    Ahmed, Karim K.
    Badra, Niveen M.
    Ahmed, Hamdy M.
    Rabie, Wafaa B.
    MATHEMATICS, 2022, 10 (22)
  • [24] A partial derivative-dressing approach to the Kundu-Eckhaus equation
    Luo, Jinghua
    Fan, Engui
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [25] Elliptic function soliton solutions of the higher-order nonlinear dispersive Kundu-Eckhaus dynamical equation with applications and stability
    Lu, Dianchen
    Seadawy, Aly R.
    Arshad, Muhammad
    INDIAN JOURNAL OF PHYSICS, 2021, 95 (04) : 691 - 704
  • [26] Optical solitons with differential group delay for coupled Kundu-Eckhaus equation using extended simplest equation approach
    El Sheikh, M. M. A.
    Ahmed, Hamdy M.
    Arnous, Ahmed H.
    Rabie, Wafaa B.
    Biswas, Anjan
    Khan, Salam
    Alshomrani, Ali Saleh
    OPTIK, 2020, 208
  • [27] Soliton solutions of generalized Kundu-Eckhaus equation with an extra-dispersion via improved modified extended tanh-function technique
    Ahmed, Karim K. K.
    Badra, Niveen M. M.
    Ahmed, Hamdy M. M.
    Rabie, Wafaa B. B.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)
  • [28] Soliton solutions of generalized Kundu-Eckhaus equation with an extra-dispersion via improved modified extended tanh-function technique
    Karim K. Ahmed
    Niveen M. Badra
    Hamdy M. Ahmed
    Wafaa B. Rabie
    Optical and Quantum Electronics, 2023, 55
  • [29] On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method
    Baskonus, Haci Mehmet
    Bulut, Hasan
    WAVES IN RANDOM AND COMPLEX MEDIA, 2015, 25 (04) : 720 - 728
  • [30] On the dispersive shock waves of the defocusing Kundu-Eckhaus equation in an optical fiber
    Li, Xinyue
    Bai, Qian
    Zhao, Qiulan
    NONLINEAR DYNAMICS, 2025, 113 (08) : 8859 - 8874