Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov's method

被引:54
|
作者
El-Borai, M. M. [1 ]
El-Owaidy, H. M. [2 ]
Ahmed, Hamdy M. [3 ]
Arnous, Ahmed H. [3 ]
Moshokoa, Seithuti [4 ]
Biswas, Anjan [4 ,5 ]
Belic, Milivoj [6 ]
机构
[1] Univ Alexandria, Fac Sci, Dept Math, Qesm Bab Sharqi, Alexandria Gove, Egypt
[2] Al Azhar Univ, Nasr City, Cairo Governora, Egypt
[3] Higher Inst Engn, Dept Engn Math & Phys, 15th Of May City, Cairo Governora, Egypt
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 80203, Saudi Arabia
[6] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2017年 / 128卷
关键词
Solitons; Eckhaus equation; Extended Kudryashov method; NONLINEAR EVOLUTION-EQUATIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION METHOD; OPTICAL SOLITONS; (G'/G)-EXPANSION METHOD; NANO-FIBERS;
D O I
10.1016/j.ijleo.2016.10.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we apply the extended Kudryashov method to a nonlinear Schrodinger type equation called the Kundu-Eckhaus equation or the Eckhaus equation which was independently introduced by Wiktor Eckhaus and by Anjan Kundu in 1984-1985 to model the propagation of waves in dispersive media. The proposed method is direct, effective and takes full advantages of the Bernoulli and Riccati equations to construct new exact solutions of that model and can be extended to many nonlinear evolution equations in mathematical physics. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [1] Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ(ξ))-expansion method
    Manafian, Jalil
    Lakestani, Mehrdad
    OPTIK, 2016, 127 (14): : 5543 - 5551
  • [2] Bright and dark soliton solutions for the complex Kundu-Eckhaus equation
    Bekir, Ahmet
    Zahran, Emad H. M.
    OPTIK, 2020, 223
  • [3] Optical soliton perturbation with full nonlinearity for Kundu-Eckhaus equation by extended trial function scheme
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2018, 160 : 17 - 23
  • [4] Dark and singular solitons of Kundu-Eckhaus equation for optical fibers
    Vega-Guzman, Jose
    Mahmood, M. F.
    Milovic, Daniela
    Zerrad, Essaid
    Biswas, Anjan
    Belic, Milivoj
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2015, 9 (11-12): : 1353 - 1355
  • [5] Optical soliton perturbation with full nonlinearity for Kundu-Eckhaus equation by modified simple equation method
    Biswas, Anjan
    Yildirim, Yakup
    Yasar, Emrullah
    Triki, Houria
    Alshomrani, Ali Saleh
    Ullah, Malik Zaka
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2018, 157 : 1376 - 1380
  • [6] Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended G′/G-expansion scheme
    Ekici, Mehmet
    Mirzazadeh, Mohammad
    Sonmezoglu, Abdullah
    Zhou, Qin
    Moshokoa, Seithuti P.
    Biswas, Anjan
    Belic, Milivoj
    OPTIK, 2016, 127 (22): : 10490 - 10497
  • [7] Darboux transformation and exact solution to the nonlocal Kundu-Eckhaus equation
    Yang, Yingmin
    Xia, Tiecheng
    Liu, Tongshuai
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [8] Soliton solutions for the Kundu-Eckhaus equation with the aid of unified algebraic and auxiliary equation expansion methods
    Kilic, Bulent
    Inc, Mustafa
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (07) : 871 - 879
  • [9] A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method
    Rezazadeh, Hadi
    Korkmaz, Alper
    Eslami, Mostafa
    Mirhosseini-Alizamini, Seyed Mehdi
    OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (03)
  • [10] Optical solitons for the Kundu-Eckhaus equation with time dependent coefficient
    Inc, Mustafa
    Baleanu, Dumitru
    OPTIK, 2018, 159 : 324 - 332