Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov's method

被引:56
作者
El-Borai, M. M. [1 ]
El-Owaidy, H. M. [2 ]
Ahmed, Hamdy M. [3 ]
Arnous, Ahmed H. [3 ]
Moshokoa, Seithuti [4 ]
Biswas, Anjan [4 ,5 ]
Belic, Milivoj [6 ]
机构
[1] Univ Alexandria, Fac Sci, Dept Math, Qesm Bab Sharqi, Alexandria Gove, Egypt
[2] Al Azhar Univ, Nasr City, Cairo Governora, Egypt
[3] Higher Inst Engn, Dept Engn Math & Phys, 15th Of May City, Cairo Governora, Egypt
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 80203, Saudi Arabia
[6] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2017年 / 128卷
关键词
Solitons; Eckhaus equation; Extended Kudryashov method; NONLINEAR EVOLUTION-EQUATIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION METHOD; OPTICAL SOLITONS; (G'/G)-EXPANSION METHOD; NANO-FIBERS;
D O I
10.1016/j.ijleo.2016.10.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we apply the extended Kudryashov method to a nonlinear Schrodinger type equation called the Kundu-Eckhaus equation or the Eckhaus equation which was independently introduced by Wiktor Eckhaus and by Anjan Kundu in 1984-1985 to model the propagation of waves in dispersive media. The proposed method is direct, effective and takes full advantages of the Bernoulli and Riccati equations to construct new exact solutions of that model and can be extended to many nonlinear evolution equations in mathematical physics. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 29 条
[1]   Shock wave development in couple stress fluid-filled thin elastic tubes [J].
Adesanya, Samuel O. ;
Eslami, Mostafa ;
Mirzazadeh, Mohammad ;
Biswas, Anjan .
EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (06)
[2]  
Arnous A.H., 2015, J. Comput, V12, P5940, DOI DOI 10.1166/jctn.2015.4739
[3]   Application of the generalized Kudryashov method to the Eckhaus equation [J].
Arnous, Ahmed H. ;
Mirzazadeh, Mohammad .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (05) :577-586
[4]  
Arnous AH, 2015, OPTOELECTRON ADV MAT, V9, P1214
[5]  
Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
[6]  
Bulut H., 2014, Int. J. Model. Optim, V4, P315, DOI [10.7763/IJMO.2014.V4.392, DOI 10.7763/IJMO.2014.V4.392]
[7]   NONLINEAR EVOLUTION-EQUATIONS, RESCALINGS, MODEL PDES AND THEIR INTEGRABILITY .1. [J].
CALOGERO, F ;
ECKHAUS, W .
INVERSE PROBLEMS, 1987, 3 (02) :229-262
[8]   THE ECKHAUS PDE I-PSI-T+PSIXX+2(/PSI/2)XPSI+/PSI/4PSI=0 [J].
CALOGERO, F ;
DELILLO, S .
INVERSE PROBLEMS, 1987, 3 (04) :633-681
[9]   All exact travelling wave solutions of Hirota equation and Hirota-Maccari system [J].
Demiray, Seyma Tuluce ;
Pandir, Yusuf ;
Bulut, Hasan .
OPTIK, 2016, 127 (04) :1848-1859
[10]   Generalized Kudryashov method for nonlinear fractional double sinh-Poisson equation [J].
Demiray, Seyma Tuluce ;
Bulut, Hasan .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03) :1349-1355