A BOUND ON THE ORDER OF NON-ABELIAN TENSOR SQUARE OF A PRIME-POWER GROUP

被引:5
作者
Jafari, S. H. [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Iran
关键词
Non-abelian tensor square; PRODUCTS;
D O I
10.1080/00927872.2010.532845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article improves on an upper bound for the order of the non-abelian tensor square of a finite p-group G given in [3]. In particular, applying this for finite p-groups of order p(n) with factor group G/G' of order p(m), the bound p(nm) attains if and only if G is elementary abelian of rank n, quaternion group of order 8, or extra special p-group of order p(3) with odd exponent p.
引用
收藏
页码:528 / 530
页数:3
相关论文
共 4 条
[1]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[2]   SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS [J].
BROWN, R ;
JOHNSON, DL ;
ROBERTSON, EF .
JOURNAL OF ALGEBRA, 1987, 111 (01) :177-202
[3]   Tensor products of prime-power groups [J].
Ellis, G ;
McDermott, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 132 (02) :119-128
[4]  
Rocco N. R., 1991, Bol. Soc. Brasil Mat., V22, P63