Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer

被引:98
作者
Gu, Yang [1 ]
Jiang, Yu [1 ,2 ]
Wu, Hui [1 ]
Liu, Xudong [1 ]
Li, Zhilin [1 ]
Li, Jian [1 ]
Xiao, Han [1 ]
Shen, Zhaobing [2 ]
Dong, Hongjun [3 ]
Yang, Yunliu [1 ]
Li, Yin [3 ]
Jiang, Weihong [1 ,2 ]
Yang, Sheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Key Lab Synthet Biol, Shanghai 200032, Peoples R China
[2] Shanghai Res & Dev Ctr Ind Biotechnol, Shanghai, Peoples R China
[3] Chinese Acad Sci, Inst Microbiol, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金;
关键词
Butanol; Feedstocks; Metabolic engineering; Ratio; Titer; CLOSTRIDIUM-ACETOBUTYLICUM FERMENTATIONS; SOLVENT-PRODUCING CLOSTRIDIA; JERUSALEM-ARTICHOKE TUBERS; TRANSCRIPTIONAL ANALYSIS; WHEAT-STRAW; ACETONE FORMATION; DOWN-REGULATION; SIMULTANEOUS SACCHARIFICATION; SACCHAROMYCES-CEREVISIAE; CATABOLITE REPRESSION;
D O I
10.1002/biot.201100046
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Butanol is an important solvent and transport fuel additive, and can be produced by microbial fermentation. Attempts to generate a superior microbial producer of butanol have been made through different metabolic engineering strategies. However, to date, butanol bio-production is still not economically competitive compared to petrochemical-derived production because of its major drawbacks, such as, high cost of the feedstocks, low butanol concentration in the fermentation broth and the co-production of low-value by-products acetone and ethanol. Here we analyze the main bottlenecks in microbial butanol production and summarize relevant advances from recently reported studies. Further needs and directions for developing real industrially applicable strains in butanol production are also discussed.
引用
收藏
页码:1348 / 1357
页数:10
相关论文
共 81 条
[1]   Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress [J].
Alsaker, KV ;
Spitzer, TR ;
Papoutsakis, ET .
JOURNAL OF BACTERIOLOGY, 2004, 186 (07) :1959-1971
[2]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[3]   Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis [J].
Berezina, Oksana V. ;
Zakharova, Natalia V. ;
Brandt, Agnieszka ;
Yarotsky, Sergey V. ;
Schwarz, Wolfgang H. ;
Zverlov, Vladimir V. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 87 (02) :635-646
[4]   Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways [J].
Bond-Watts, Brooks B. ;
Bellerose, Robert J. ;
Chang, Michelle C. Y. .
NATURE CHEMICAL BIOLOGY, 2011, 7 (04) :222-227
[5]   Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostfidium acetobutylicum [J].
Borden, Jacob R. ;
Papoutsakis, Eleftherios Terry .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (09) :3061-3068
[6]   EFFECTS OF BUTANOL ON CLOSTRIDIUM-ACETOBUTYLICUM [J].
BOWLES, LK ;
ELLEFSON, WL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 50 (05) :1165-1170
[7]  
Cadman ST, 2010, International patent WO, Patent No. [2010/084349, 2010084349]
[8]   Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101 [J].
Chen, CK ;
Blaschek, HP .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1999, 52 (02) :170-173
[9]  
Cheng HR, 2011, MICROB CELL FACT, V10, DOI [10.1186/1475-2859-10-5, 10.1186/1475-2859-10-43]
[10]   The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain [J].
Cornillot, E ;
Nair, RV ;
Papoutsakis, ET ;
Soucaille, P .
JOURNAL OF BACTERIOLOGY, 1997, 179 (17) :5442-5447