Zinc Oxide @ Silica Core/Shell Microspheres for Single-Molecule Force Microscopy in Aqueous and Nonaqueous Solvents

被引:4
作者
Yu, Qixuan [1 ]
Chen, Ya-Na [1 ]
Black, Jacob W. [1 ]
Ganim, Ziad [1 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
OPTICAL TRAP; ZNO NANORODS; DNA; PARTICLES; REVEALS; ELECTROCHEMISTRY; SPECTROSCOPY; DYNAMICS; MOTION;
D O I
10.1021/acs.jpcc.9b11923
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Optical tweezers provide a platform for both manipulating and probing the chemistry of a single polymer molecule tethered between dielectric microspheres. It has been challenging to adapt this technology to organic solvents, in part due to the limited availability of optically trappable materials possessing the necessary diameter and refractive index contrast. Here we report on the development of broadly accessible optical trapping in aqueous and organic solvents that utilizes zinc oxide-silica core/shell microspheres (beads). The addition of a silica shell allows otherwise highly scattering zinc oxide nanoparticles to be stably trapped and readily functionalized. Trapping was observed in water, chloroform, tetrahydrofuran, and ethyl acetate. We demonstrate how these beads can be used to measure the force-extension curves of DNA and poly(methyl methacrylate) respectively utilizing antibody/antigen complementation or strain-promoted azide/alkyne cycloaddition to form linkages in situ. In the latter, a strong, contiguous chain of covalent bonds is formed between the microspheres; therefore, UV bond photolysis was used to count the number of rupture steps and control for single-molecule link formation. In addition to being trappable in many solvents, ZnO@SiO2 core/shell beads can be used as solid support during harsh synthetic conditions and can be readily prepared in the presence of atmospheric oxygen.
引用
收藏
页码:5789 / 5795
页数:7
相关论文
共 55 条
[1]   Nondestructive Approach for Additive Nanomanufacturing of Metallic Nanostructures in the Air [J].
Alam, Md Shah ;
Zhao, Chenglong .
ACS OMEGA, 2018, 3 (01) :1213-1219
[2]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[3]   Power spectrum analysis for optical tweezers [J].
Berg-Sorensen, K ;
Flyvbjerg, H .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (03) :594-612
[4]   An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents [J].
Black, Jacob W. ;
Kamenetska, Maria ;
Ganim, Ziad .
NANO LETTERS, 2017, 17 (11) :6598-6605
[5]   Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers [J].
Cecconi, Ciro ;
Shank, Elizabeth A. ;
Dahlquist, Frederick W. ;
Marqusee, Susan ;
Bustamante, Carlos .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2008, 37 (06) :729-738
[6]   Preparation of large monodispersed spherical silica particles using seed particle growth [J].
Chang, SM ;
Lee, M ;
Kim, WS .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 286 (02) :536-542
[7]   Ultrahigh-resolution optical trap with single-fluorophore sensitivity [J].
Comstock, Matthew J. ;
Ha, Taekjip ;
Chemla, Yann R. .
NATURE METHODS, 2011, 8 (04) :335-U82
[8]   Bioconjugated Core-Shell Microparticles for High-Force Optical Trapping [J].
Cordova, Juan Carlos ;
Reinemann, Dana N. ;
Laky, Daniel J. ;
Hesse, William R. ;
Tushak, Sophie K. ;
Weltman, Zane L. ;
Best, Kelsea B. ;
Bardhan, Rizia ;
Lang, Matthew J. .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2018, 35 (03)
[9]   Optically oriented attachment of nanoscale metal-semiconductor heterostructures in organic solvents via photonic nanosoldering [J].
Crane, Matthew J. ;
Pandres, Elena P. ;
Davis, E. James ;
Holmberg, Vincent C. ;
Pauzauskie, Peter J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions [J].
Easter, Quinn T. ;
Blum, Suzanne A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (44) :13772-13775