Phosphorylation in Protein-Protein Binding: Effect on Stability and Function

被引:227
|
作者
Nishi, Hafumi [1 ]
Hashimoto, Kosuke [1 ]
Panchenko, Anna R. [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA
基金
日本学术振兴会; 美国国家卫生研究院;
关键词
EVOLUTIONARY CONSERVATION; REVEALS EVOLUTIONARY; GENE ONTOLOGY; HOT-SPOTS; DATABASE; SITES; DOMAIN; ELECTROSTATICS; PHOSPHOSITE; CHANNEL;
D O I
10.1016/j.str.2011.09.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Posttranslational modifications offer a dynamic way to regulate protein activity, subcellular localization, and stability. Here we estimate the effect of phosphorylation on protein binding and function for different types of complexes from human proteome. We find that phosphorylation sites tend to be located on binding interfaces in heterooligomeric and weak transient homooligomeric complexes. Analysis of molecular mechanisms of phosphorylation shows that phosphorylation may modulate the strength of interactions directly on interfaces and that binding hotspots tend to be phosphorylated in heterooligomers. Although the majority of complexes do not show significant estimated stability differences upon phosphorylation or dephosphorylation, for about one-third of all complexes it causes relatively large changes in binding energy. We discuss the cases where phosphorylation mediates the complex formation and regulates the function. We show that phosphorylation sites are more likely to be evolutionary conserved than other interfacial residues.
引用
收藏
页码:1807 / 1815
页数:9
相关论文
共 50 条
  • [1] Prediction of protein-protein binding affinity using diverse protein-protein interface features
    Ma, Duo
    Guo, Yanzhi
    Luo, Jiesi
    Pu, Xuemei
    Li, Menglong
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 138 : 7 - 13
  • [2] Modulating Protein-Protein Interactions with Small Molecules: The Importance of Binding Hotspots
    Thangudu, Ratna Rajesh
    Bryant, Stephen H.
    Panchenko, Anna R.
    Madej, Thomas
    JOURNAL OF MOLECULAR BIOLOGY, 2012, 415 (02) : 443 - 453
  • [3] Regulation of protein-protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes
    Nishi, Hafumi
    Fong, Jessica H.
    Chang, Christiana
    Teichmann, Sarah A.
    Panchenko, Anna R.
    MOLECULAR BIOSYSTEMS, 2013, 9 (07) : 1620 - 1626
  • [4] Active learning for protein function prediction in protein-protein interaction networks
    Xiong, Wei
    Xie, Luyu
    Zhou, Shuigeng
    Guan, Jihong
    NEUROCOMPUTING, 2014, 145 : 44 - 52
  • [5] Prediction of protein-protein binding free energies
    Vreven, Thom
    Hwang, Howook
    Pierce, Brian G.
    Weng, Zhiping
    PROTEIN SCIENCE, 2012, 21 (03) : 396 - 404
  • [6] Inferring protein function by domain context similarities in protein-protein interaction networks
    Zhang, Song
    Chen, Hu
    Liu, Ke
    Sun, Zhirong
    BMC BIOINFORMATICS, 2009, 10
  • [7] PBSword: a web server for searching similar protein-protein binding sites
    Pang, Bin
    Kuang, Xingyan
    Zhao, Nan
    Korkin, Dmitry
    Shyu, Chi-Ren
    NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) : W428 - W434
  • [8] Global Voting Model for Protein Function Prediction from Protein-Protein Interaction Networks
    Fang, Yi
    Sun, Mengtian
    Dai, Guoxian
    Ramani, Karthik
    INTELLIGENT COMPUTING IN BIOINFORMATICS, 2014, 8590 : 466 - 477
  • [9] Protein Function Prediction Using Function Associations in Protein-Protein Interaction Network
    Sun, Pingping
    Tan, Xian
    Guo, Sijia
    Zhang, Jingbo
    Sun, Bojian
    Du, Ning
    Wang, Han
    Sun, Hui
    IEEE ACCESS, 2018, 6 : 30892 - 30902
  • [10] Protein Function Prediction by Clustering of Protein-Protein Interaction Network
    Cingovska, Ivana
    Bogojeska, Aleksandra
    Trivodaliev, Kire
    Kalajdziski, Slobodan
    ICT INNOVATIONS 2011, 2011, 150 : 39 - 49