Recursive Taylor Series Expansion Method for Rigid-Body Molecular Dynamics

被引:8
作者
Akimov, Alexey V. [1 ]
Kolomeisky, Anatoly B. [1 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
SIMULATION; SURFACES; BODIES; INTEGRATOR; MONOLAYERS; MECHANISM; DIFFUSION; NANOCARS; AU(111); SYSTEMS;
D O I
10.1021/ct200334e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics computer simulation methods are very important for understanding mechanisms of chemical, physical, and biological processes. The reliability of molecular dynamics simulations strongly depends on the integration schemes used in the simulations. In this work, we developed new rigid body integration schemes for molecular dynamics simulations. Our approach is based on a numerically exact solution to the free rigid body problem, which is used in the classical propagator splitting scheme. We use the Taylor series expansion of rotational dynamical variables in conjunction with the recursive solution for higher order derivatives of these variables. Such an approach is computationally very efficient, robust, and easy to implement, and it does not employ Jacobi elliptic functions, while still providing the numerically exact solution of the free rigid body problem. Our studies showed that the new integration methods have long-time stability and accuracy properties which are comparable to those of existing symplectic integrators. The extension to the case of a canonical ensemble is also developed, allowing one to perform simulations at constant temperatures.
引用
收藏
页码:3062 / 3071
页数:10
相关论文
共 49 条
  • [1] Molecular dynamics of surface-moving thermally driven nanocars
    Akimov, Alexei V.
    Nemukhin, Alexander V.
    Moskovsky, Alexander A.
    Kolomeisky, Anatoly B.
    Tour, James M.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (04) : 652 - 656
  • [2] Dynamics of Single-Molecule Rotations on Surfaces that Depend on Symmetry, Interactions, and Molecular Sizes
    Akimov, Alexey
    Kolomeisky, Anatoly B.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (01) : 125 - 131
  • [3] STUDIES IN MOLECULAR DYNAMICS .1. GENERAL METHOD
    ALDER, BJ
    WAINWRIGHT, TE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02) : 459 - 466
  • [4] Molecular dynamics Simulations of alkanethiol monolayers with azobenzene molecules on the au(111) surface
    Alkis, Sabri
    Jiang, Ping
    Wang, Lin-Lin
    Roitberg, Adrian E.
    Cheng, Hai-Ping
    Krause, Jeffrey L.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (40) : 14743 - 14752
  • [5] Molecular dynamics simulation of benzene diffusion in MOF-5: Importance of lattice dynamics
    Amirjalayer, Saeed
    Tafipolsky, Maxim
    Schmid, Rochus
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (03) : 463 - 466
  • [6] The Nose-Poincare method for constant temperature molecular dynamics
    Bond, SD
    Leimkuhler, BJ
    Laird, BB
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) : 114 - 134
  • [7] A symmetric splitting method for rigid body dynamics
    Celledoni, E.
    Safstrom, N.
    [J]. MODELING IDENTIFICATION AND CONTROL, 2006, 27 (02) : 95 - 108
  • [8] Efficient time-symmetric simulation of torqued rigid bodies using Jacobi elliptic functions
    Celledoni, E.
    Safstrom, N.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19): : 5463 - 5478
  • [9] A Computational Study of the Mechanism of the Selective Crystallization of α- and β-Glycine from Water and Methanol-Water Mixture
    Chen, Jie
    Trout, Bernhardt L.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (43) : 13764 - 13772
  • [10] Prediction of protein binding regions
    Chennamsetty, Naresh
    Voynov, Vladimir
    Kayser, Veysel
    Helk, Bernhard
    Trout, Bernhardt L.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (03) : 888 - 897