A Data-Driven Detection strategy of False Data in Cooperative DC Microgrids

被引:1
|
作者
Yang, Yixian [1 ]
Guo, Li [1 ]
Li, Xialin [1 ]
Li, Jiaxin [1 ]
Liu, Wei [2 ]
He, Huihui [2 ]
机构
[1] Tianjin Univ, Minist Educ, Key Lab Smart Grid, Tianjin, Peoples R China
[2] Natl Univ Def Technol, Coll Syst Engn, Hunan Key Lab Multienergy Syst Intelligent Interc, Changsha, Peoples R China
来源
IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY | 2021年
基金
国家重点研发计划;
关键词
DC microgrids; distributed control; cyber physical system; false data injection attack; data-driven; CYBER-ATTACK DETECTION; NETWORKS;
D O I
10.1109/IECON48115.2021.9589318
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distributed cooperative control strategies of DC microgrids (DCMG) reduce the detriment of communication delays, packet loss and link failure compared with centralized control. However, they are vulnerary to cyber-attacks. The operating objectives can be deviated by false data. Firstly, the adverse effects of false data are explained and modeled. A data-driven strategy based on linear regression is then proposed to remove the false data by offline learning and online judging of the transient process in DCMG without affecting the dynamic response. It successfully solves the problem of parameter selection of resilient control. Finally, the detection strategy is verified by detailed time-domain simulation.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Online data-driven anomaly detection in autonomous robots
    Khalastchi, Eliahu
    Kalech, Meir
    Kaminka, Gal A.
    Lin, Raz
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 43 (03) : 657 - 688
  • [42] A Data-Driven Approach of Fault Detection for LTI Systems
    Chen Zhaoxu
    Fang Huajing
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 6174 - 6179
  • [43] Comparison of Data-Driven Reconstruction Methods For Fault Detection
    Baraldi, Piero
    Di Maio, Francesco
    Genini, Davide
    Zio, Enrico
    IEEE TRANSACTIONS ON RELIABILITY, 2015, 64 (03) : 852 - 860
  • [44] Data-Driven Deep Learning for OTFS Detection br
    Gong, Yi
    Li, Qingyu
    Meng, Fanke
    Li, Xinru
    Xu, Zhan
    CHINA COMMUNICATIONS, 2023, 20 (01) : 88 - 101
  • [45] Data-Driven Low-Frequency Oscillation Event Detection Strategy for Railway Electrification Networks
    Gonzalez-Jimenez, David
    Del-Olmo, Jon
    Poza, Javier
    Garramiola, Fernando
    Madina, Patxi
    SENSORS, 2023, 23 (01)
  • [46] Online data-driven anomaly detection in autonomous robots
    Eliahu Khalastchi
    Meir Kalech
    Gal A. Kaminka
    Raz Lin
    Knowledge and Information Systems, 2015, 43 : 657 - 688
  • [47] Wind Turbine Data-Driven Intelligent Fault Detection
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 50 - 60
  • [48] Data-driven bounded-error fault detection
    Suarez Fabrega, Antonio J.
    Bravo Caro, Jose Manuel
    Abad Herrera, Pedro J.
    Gasca, Rafael M.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2014, 28 (12) : 1299 - 1324
  • [49] Data-Driven Objectness
    Kang, Hongwen
    Hebert, Martial
    Efros, Alexei A.
    Kanade, Takeo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (01) : 189 - 195
  • [50] Data-driven grasping
    Goldfeder, Corey
    Allen, Peter K.
    AUTONOMOUS ROBOTS, 2011, 31 (01) : 1 - 20