Ghost imaging as loss estimation: Quantum versus classical schemes

被引:7
|
作者
Chiuri, A. [1 ]
Gianani, I [2 ]
Cimini, V [2 ,3 ]
De Dominicis, L. [1 ]
Genoni, M. G. [4 ]
Barbieri, M. [2 ,5 ]
机构
[1] Ctr Ric Frascati, ENEA, Via E Fermi 45, I-00044 Frascati, Italy
[2] Univ Roma Tre, Dipartimento Sci, Via Vasca Navale 84, I-00146 Rome, Italy
[3] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ Milan, Dipartimento Fis Aldo Pontremoli, I-20133 Milan, Italy
[5] Ist Nazl Ott INO CNR, Lgo E Fermi 6, I-50125 Florence, Italy
关键词
NOISE;
D O I
10.1103/PhysRevA.105.013506
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Frequency correlations are a versatile and powerful tool which can be exploited to perform spectral analysis of objects whose direct measurement might be unfeasible. This is achieved through a so-called ghost spectrometer that can be implemented with quantum and classical resources alike. While there are some known advantages associated to either choice, an analysis of their metrological capabilities has not yet been performed. Here we report on the metrological comparison between a quantum and a classical ghost spectrometer. We perform the estimation of the transmittivity of a bandpass filter using frequency-entangled photon pairs. Our results show that a quantum advantage is achievable, depending on the values of the transmittivity and on the number of frequency modes analyzed.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Classical versus quantum coherence
    Greenland, PT
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803): : 379 - 390
  • [42] Classical versus quantum ontology
    Busch, P
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2002, 33B (03): : 517 - 539
  • [43] Randomness: Quantum versus classical
    Khrennikov, Andrei
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2016, 14 (04)
  • [44] Quantum versus classical uncertainty
    S. L. Luo
    Theoretical and Mathematical Physics, 2005, 143 : 681 - 688
  • [45] 3D quantum ghost imaging
    Pitsch, Carsten
    Walter, Dominik
    Gasparini, Leonardo
    Buersing, Helge
    Eichhorn, Marc
    APPLIED OPTICS, 2023, 62 (23) : 6275 - 6281
  • [46] Quantum neural compressive sensing for ghost imaging
    Zhai, Xinliang
    Xiao, Tailong
    Huang, Jingzheng
    Fan, Jianping
    Zeng, Guihua
    PHYSICAL REVIEW APPLIED, 2025, 23 (01):
  • [47] Quantum ghost imaging with improved diffraction limit
    Balakin, Dmitriy A.
    Belinsky, Alexander, V
    QUANTUM INFORMATION PROCESSING, 2022, 21 (07)
  • [48] Super-resolved quantum ghost imaging
    Moodley, Chane
    Forbes, Andrew
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [49] Quantum ghost imaging using asynchronous detection
    Pitsch, Carsten
    Walter, Dominik
    Grosse, Simon
    Brockherde, Werner
    Buersing, Helge
    Eichhorn, Marc
    APPLIED OPTICS, 2021, 60 (22) : F66 - F70
  • [50] Temporal ghost imaging for quantum device evaluation
    Wu, Juan
    Wang, Fang-Xiang
    Chen, Wei
    Wang, Shuang
    He, De-Yong
    Yin, Zhen-Qiang
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICS LETTERS, 2019, 44 (10) : 2522 - 2525