Experimentally Accessible Lower Bounds for Genuine Multipartite Entanglement and Coherence Measures

被引:33
|
作者
Dai, Yue [1 ,2 ]
Dong, Yuli [2 ]
Xu, Zhenyu [2 ]
You, Wenlong [2 ]
Zhang, Chengjie [1 ,2 ,3 ]
Guehne, Otfried [3 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Peoples R China
[2] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[3] Univ Siegen, Nat Wissench Tech Fak, Walter Flex Str 3, Siegen 57068, Germany
来源
PHYSICAL REVIEW APPLIED | 2020年 / 13卷 / 05期
基金
中国国家自然科学基金;
关键词
SEPARABILITY; CONCURRENCE;
D O I
10.1103/PhysRevApplied.13.054022
中图分类号
O59 [应用物理学];
学科分类号
摘要
Experimentally quantifying entanglement and coherence are extremely important for quantum resource theory. However, because the quantum state tomography requires exponentially growing measurements with the number of qubits, it is hard to quantify entanglement and coherence based on the full information of the experimentally realized multipartite states. Fortunately, other methods have been found to directly measure the fidelity of experimental states without quantum state tomography. Here we present a fidelity-based method to derive experimentally accessible lower bounds for measures of genuine multipartite entanglement and coherence. On the one hand, the method works for genuine multipartite entanglement measures including the convex-roof extended negativity, the concurrence, the G-concurrence, and the geometric measure for genuine multipartite entanglement. On the other hand, the method also delivers observable lower bounds for the convex roof of the l(1)-norm of coherence, the geometric measure of coherence, and the coherence of formation. Furthermore, all the lower bounds are based on the fidelity between the chosen pure state and the target state, and we obtain the lower bounds of several real experimental states as examples of our results.
引用
收藏
页数:11
相关论文
共 40 条
  • [31] Projection based lower bounds of concurrence for multipartite quantum systems
    Hui Zhao
    MeiMing Zhang
    Shao-Ming Fei
    Naihuan Jing
    International Journal of Theoretical Physics, 2020, 59 : 1688 - 1698
  • [32] Detecting genuine multipartite entanglement in three-qubit systems with eternal non-Markovianity
    Vaishy, Ankit
    Mitra, Subhadip
    Bhattacharya, Samyadeb
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (22)
  • [33] Projection based lower bounds of concurrence for multipartite quantum systems
    Zhao, Hui
    Zhang, MeiMing
    Fei, Shao-Ming
    Jing, Naihuan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (06) : 1688 - 1698
  • [34] Triangle inequalities in coherence measures and entanglement concurrence
    Dai, Yue
    You, Wenlong
    Dong, Yuli
    Zhang, Chengjie
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [35] Computable lower bounds on the entanglement cost of quantum channels
    Lami, Ludovico
    Regula, Bartosz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (03)
  • [36] Separability and lower bounds of quantum entanglement based on realignment
    Sun, Jiaxin
    Yao, Hongmei
    Fei, Shao-Ming
    Fan, Zhaobing
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [37] Upper and lower bounds for Tsallis-q entanglement measure
    Mahboobeh Moslehi
    Hamid Reza Baghshahi
    Sayyed Yahya Mirafzali
    Quantum Information Processing, 2020, 19
  • [38] Upper and lower bounds for Tsallis-q entanglement measure
    Moslehi, Mahboobeh
    Baghshahi, Hamid Reza
    Mirafzali, Sayyed Yahya
    QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [39] Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems
    Qi, Xianfei
    Gao, Ting
    Yan, Fengli
    QUANTUM INFORMATION PROCESSING, 2017, 16 (01)
  • [40] Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems
    Xianfei Qi
    Ting Gao
    Fengli Yan
    Quantum Information Processing, 2017, 16