The finite element method on the Sierpinski gasket

被引:33
|
作者
Gibbons, M
Raj, A
Strichartz, RS
机构
[1] Manhattan Coll, Dept Math, Bronx, NY 10471 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
finite element method; Sierpinski gasket; fractal differential equations;
D O I
10.1007/s00365-001-0010-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For certain classes of fractal differential equations on the Sierpinski gasket, built using the Kigami Laplacian, we describe how to approximate solutions using the finite element method based on piecewise harmonic or piecewise biharmonic splines. We give theoretical error estimates, and compare these with experimental data obtained using a computer implementation of the method (available at the web site http://mathlab.cit.cornell.edu/similar to gibbons). We also explain some interesting structure concerning the spectrum of the Laplacian that became apparent from the experimental data.
引用
收藏
页码:561 / 588
页数:28
相关论文
共 50 条
  • [41] Sobolev Orthogonal Polynomials on the Sierpinski Gasket
    Qingxuan Jiang
    Tian Lan
    Kasso A. Okoudjou
    Robert S. Strichartz
    Shashank Sule
    Sreeram Venkat
    Xiaoduo Wang
    Journal of Fourier Analysis and Applications, 2021, 27
  • [42] On the fundamental group of the Sierpinski-gasket
    Akiyama, S.
    Dorfer, G.
    Thuswaldner, J. M.
    Winkler, R.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (09) : 1655 - 1672
  • [43] Harmonic mappings of the Sierpinski gasket to the circle
    Strichartz, RS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (03) : 805 - 817
  • [44] “The Sierpinski gasket minus its bottom line” as a tree of Sierpinski gaskets
    J. Kigami
    K. Takahashi
    Mathematische Zeitschrift, 2024, 306
  • [45] "The Sierpinski gasket minus its bottom line" as a tree of Sierpinski gaskets
    Kigami, J.
    Takahashi, K.
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (02)
  • [46] Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket
    Brigitte E. Breckner
    Csaba Varga
    Journal of Optimization Theory and Applications, 2015, 167 : 842 - 861
  • [47] Restrictions of Laplacian Eigenfunctions to Edges in the Sierpinski Gasket
    Hua Qiu
    Haoran Tian
    Constructive Approximation, 2019, 50 : 243 - 269
  • [48] A TRACE THEOREM FOR SOBOLEV SPACES ON THE SIERPINSKI GASKET
    Cao, Shiping
    Li, Shuangping
    Strichartz, Robert S.
    Talwai, Prem
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3901 - 3916
  • [49] GEODESICS OF HIGHER-DIMENSIONAL SIERPINSKI GASKET
    Gu, Jiangwen
    Ye, Qianqian
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)
  • [50] MEAN TIME TO ABSORPTION ON THE JOINT SIERPINSKI GASKET
    Zhang, Zhizhuo
    Wu, Bo
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)