The finite element method on the Sierpinski gasket

被引:33
|
作者
Gibbons, M
Raj, A
Strichartz, RS
机构
[1] Manhattan Coll, Dept Math, Bronx, NY 10471 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
finite element method; Sierpinski gasket; fractal differential equations;
D O I
10.1007/s00365-001-0010-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For certain classes of fractal differential equations on the Sierpinski gasket, built using the Kigami Laplacian, we describe how to approximate solutions using the finite element method based on piecewise harmonic or piecewise biharmonic splines. We give theoretical error estimates, and compare these with experimental data obtained using a computer implementation of the method (available at the web site http://mathlab.cit.cornell.edu/similar to gibbons). We also explain some interesting structure concerning the spectrum of the Laplacian that became apparent from the experimental data.
引用
收藏
页码:561 / 588
页数:28
相关论文
共 50 条
  • [21] Maximum density for the Sierpinski gasket
    Zhou, Ji
    Luo, Mao-Kang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) : 597 - 603
  • [22] Spanning Trees on the Sierpinski Gasket
    Shu-Chiuan Chang
    Lung-Chi Chen
    Wei-Shih Yang
    Journal of Statistical Physics, 2007, 126 : 649 - 667
  • [23] Harmonic Sierpinski Gasket and Applications
    Guariglia, Emanuel
    ENTROPY, 2018, 20 (09)
  • [24] On the packing measure of the Sierpinski gasket
    Llorente, Marta
    Eugenia Mera, M.
    Moran, Manuel
    NONLINEARITY, 2018, 31 (06) : 2571 - 2589
  • [25] Fractal interpolation on the Sierpinski Gasket
    Celik, Derya
    Kocak, Sahin
    Ozdemir, Yunus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 343 - 347
  • [26] Spanning forests on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2008, 10 (02): : 55 - 76
  • [28] Extensions and their Minimizations on the Sierpinski Gasket
    Li, Pak-Hin
    Ryder, Nicholas
    Strichartz, Robert S.
    Ugurcan, Baris Evren
    POTENTIAL ANALYSIS, 2014, 41 (04) : 1167 - 1201
  • [29] Box dimension of harmonic functions on higher dimensional Sierpinski gasket and Sierpinski gasket with bilateral energy
    Gopalakrishnan, Harsha
    Prasad, Srijanani Anurag
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [30] Sobolev Orthogonal Polynomials on the Sierpinski Gasket
    Jiang, Qingxuan
    Lan, Tian
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Sule, Shashank
    Venkat, Sreeram
    Wang, Xiaoduo
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (03)