The finite element method on the Sierpinski gasket

被引:33
|
作者
Gibbons, M
Raj, A
Strichartz, RS
机构
[1] Manhattan Coll, Dept Math, Bronx, NY 10471 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
finite element method; Sierpinski gasket; fractal differential equations;
D O I
10.1007/s00365-001-0010-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For certain classes of fractal differential equations on the Sierpinski gasket, built using the Kigami Laplacian, we describe how to approximate solutions using the finite element method based on piecewise harmonic or piecewise biharmonic splines. We give theoretical error estimates, and compare these with experimental data obtained using a computer implementation of the method (available at the web site http://mathlab.cit.cornell.edu/similar to gibbons). We also explain some interesting structure concerning the spectrum of the Laplacian that became apparent from the experimental data.
引用
收藏
页码:561 / 588
页数:28
相关论文
共 50 条