LKB1 acts as a critical brake for the glucagon-mediated fasting response

被引:4
作者
Acevedo-Acevedo, Suehelay [1 ]
Stefkovich, Megan L. [1 ]
Kang, Sun Woo Sophie [1 ]
Cunningham, Rory P. [1 ]
Cultraro, Constance M. [1 ]
Porat-Shliom, Natalie [1 ]
机构
[1] NCI, Thorac & GI Malignancies Branch, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
GROWTH-FACTOR; 21; LIVER; GLUCOSE; KINASE; ZONATION; METABOLISM; EXPRESSION; GLUTAMINE; PATHWAY; GENE;
D O I
10.1002/hep4.1942
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
As important as the fasting response is for survival, an inability to shut it down once nutrients become available can lead to exacerbated disease and severe wasting. The liver is central to transitions between feeding and fasting states, with glucagon being a key initiator of the hepatic fasting response. However, the precise mechanisms controlling fasting are not well defined. One potential mediator of these transitions is liver kinase B1 (LKB1), given its role in nutrient sensing. Here, we show LKB1 knockout mice have a severe wasting and prolonged fasting phenotype despite increased food intake. By applying RNA sequencing and intravital microscopy, we show that loss of LKB1 leads to a dramatic reprogramming of the hepatic lobule through robust up-regulation of periportal genes and functions. This is likely mediated through the opposing effect that LKB1 has on glucagon pathways and gene expression. Conclusion: Our findings show that LKB1 acts as a brake to the glucagon-mediated fasting response, resulting in "periportalization" of the hepatic lobule and whole-body metabolic inefficiency. These findings reveal a mechanism by which hepatic metabolic compartmentalization is regulated by nutrient-sensing.
引用
收藏
页码:1949 / 1961
页数:13
相关论文
共 49 条
[31]   The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver [J].
Patel, Kashyap ;
Foretz, Marc ;
Marion, Allison ;
Campbell, David G. ;
Gourlay, Robert ;
Boudaba, Nadia ;
Tournier, Emilie ;
Titchenell, Paul ;
Peggie, Mark ;
Deak, Maria ;
Wan, Min ;
Kaestner, Klaus H. ;
Goransson, Olga ;
Viollet, Benoit ;
Gray, Nathanael S. ;
Birnbaum, Morris J. ;
Sutherland, Calum ;
Sakamoto, Kei .
NATURE COMMUNICATIONS, 2014, 5
[32]   NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism [J].
Pei, Liming ;
Waki, Hironori ;
Vaitheesvaran, Bhavapriya ;
Wilpitz, Damien C. ;
Kurland, Irwin J. ;
Tontonoz, Peter .
NATURE MEDICINE, 2006, 12 (09) :1048-1055
[33]   Liver Kinase B1 Regulates Hepatocellular Tight Junction Distribution and Function In Vivo [J].
Porat-Shliom, Natalie ;
Tietgens, Amber J. ;
Van Itallie, Christina M. ;
Vitale-Cross, Lynn ;
Jarnik, Michal ;
Harding, Olivia J. ;
Anderson, James M. ;
Gutkind, J. Silvio ;
Weigert, Roberto ;
Arias, Irwin M. .
HEPATOLOGY, 2016, 64 (04) :1317-1329
[34]   Endothelial Wnts Regulate β-Catenin Signaling in Murine Liver Zonation and Regeneration: A Sequel to the Wnt-Wnt Situation [J].
Preziosi, Morgan ;
Okabe, Irohisa ;
Poddar, Minakshi ;
Singh, Sucha ;
Monga, Atdarshan P. .
HEPATOLOGY COMMUNICATIONS, 2018, 2 (07) :845-860
[35]  
Ravnskjaer K, 2016, HANDB EXP PHARMACOL, V233, P29, DOI 10.1007/164_2015_32
[36]   Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial [J].
Rosenstock, Julio ;
Wysham, Carol ;
Frias, Juan P. ;
Kaneko, Shizuka ;
Lee, Clare J. ;
Lando, Laura Fernandez ;
Mao, Huzhang ;
Cui, Xuewei ;
Karanikas, Chrisanthi A. ;
Thieu, Vivian T. .
LANCET, 2021, 398 (10295) :143-155
[37]   Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases [J].
Samuel, Varman T. ;
Shulman, Gerald I. .
CELL METABOLISM, 2018, 27 (01) :22-41
[38]   Liver-specific loss of β-catenin blocks glutamine synthesis pathway activity and cytochrome P450 expression in mice [J].
Sekine, S ;
Lan, BYA ;
Bedolli, M ;
Feng, S ;
Hebrok, M .
HEPATOLOGY, 2006, 43 (04) :817-825
[39]   Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men [J].
Seppälä-Lindroos, A ;
Vehkavaara, S ;
Häkkinen, AM ;
Goto, T ;
Westerbacka, J ;
Sovijärvi, A ;
Halavaara, J ;
Yki-Järvinen, H .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2002, 87 (07) :3023-3028
[40]   TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop [J].
Settembre, Carmine ;
De Cegli, Rossella ;
Mansueto, Gelsomina ;
Saha, Pradip K. ;
Vetrini, Francesco ;
Visvikis, Orane ;
Tuong Huynh ;
Carissimo, Annamaria ;
Palmer, Donna ;
Klisch, Tiemo Juergen ;
Wollenberg, Amanda C. ;
Di Bernardo, Diego ;
Chan, Lawrence ;
Irazoqui, Javier E. ;
Ballabio, Andrea .
NATURE CELL BIOLOGY, 2013, 15 (06) :647-+