Quantifying the relationship between streamflow and climate change in a small basin under future scenarios

被引:9
作者
Wang, Hui [1 ]
Stephenson, Scott R. [2 ]
Qu, Shijin [3 ]
机构
[1] Univ Idaho, Inst Modeling Collaborat & Innovat, Moscow, ID 83844 USA
[2] RAND Corp, Santa Monica, CA 90401 USA
[3] China Univ Geosci, Dept Land Resources Management, Wuhan 430074, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
Climate change; Hydrology; Land use and land cover; SWAT; Human-environment systems; LAND-USE CHANGE; RIVER-BASIN; PANEL-DATA; CELLULAR-AUTOMATA; MARKOV-CHAIN; RUNOFF; IMPACTS; MODEL; PRECIPITATION; COVER;
D O I
10.1016/j.ecolind.2020.106251
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Previous studies have identified the importance of simulating and quantifying the relationship between hydrologic variation and climate change under historical scenarios at regional and continental scales. However, robust demonstration of the potential of combining consistent land use/cover change (LUCC) and climate change to simulate future hydrologic processes is still lacking. Furthermore, investigating the future connections between hydrologic characteristics and climate variables demands exploration of these phenomena at small (basin) scale. To fill this gap, this research simulates land use/cover patterns in 2030 based on the logistic Cellular Automata-Markov model. Then the Soil Water Assessment Tool (SWAT) simulates change in streamflow within the Ashuelot River basin in New England between 2002-2009 and 2032-2039. Projected climate data are obtained from two general circulation models (GCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5. We also quantify relationships between the rates of change (RC) of streamflow, precipitation and potential evapotranspiration (PET) among 29 subbasins at a monthly scale between the two time periods under different climate scenarios by implementing a panel data approach. Results show greatest changes in forestland (-21.07 km(2)) and intensive urban land (+5.4 km(2)) by 2030. Comparisons between the two periods show a negative overall trend in runoff under RCPs 4.5 and 8.5 for both selected GCMs. Panel data analysis indicates that precipitation may contribute more to the RC of streamflow when change in streamflow is significantly influenced by both PET and precipitation over the study period. Therefore, this study provides an important insight into quantifying and comparing the relationship of basin-scale change between streamflow and future climate.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A framework for quantifying the impacts of climate change and human activities on hydrological drought in a semiarid basin of Northern China
    Jiang, Shanhu
    Wang, Menghao
    Ren, Liliang
    Xu, Chong-Yu
    Yuan, Fei
    Liu, Yi
    Lu, Yujie
    Shen, Hongren
    HYDROLOGICAL PROCESSES, 2019, 33 (07) : 1075 - 1088
  • [32] Modeling runoff management strategies under climate change scenarios using hydrological simulation in the Zarrineh River Basin, Iran
    Rahvareh, Maliheh
    Motamedvaziri, Baharak
    Moghaddamnia, Alireza
    Moridi, Ali
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (07) : 2205 - 2226
  • [33] Evaluating the Responses of Streamflow under Future Climate Change Scenarios in a Western Indian Himalaya Watershed
    Seema Rani
    S. Sreekesh
    Environmental Processes, 2019, 6 : 155 - 174
  • [34] Evaluating watershed service availability under future management and climate change scenarios in the Pangani Basin
    Nutter, Benedikt
    Hurni, Hans
    Wiesmann, Urs
    Ngana, James O.
    PHYSICS AND CHEMISTRY OF THE EARTH, 2013, 61-62 : 1 - 11
  • [35] Interactions between Climate Change and Complex Topography Drive Observed Streamflow Changes in the Colorado River Basin
    Solander, Kurt C.
    Bennett, Katrina E.
    Fleming, Sean W.
    Gutzler, David S.
    Hopkins, Emily M.
    Middleton, Richard S.
    JOURNAL OF HYDROMETEOROLOGY, 2018, 19 (10) : 1637 - 1650
  • [36] Evaluating the Responses of Streamflow under Future Climate Change Scenarios in a Western Indian Himalaya Watershed
    Rani, Seema
    Sreekesh, S.
    ENVIRONMENTAL PROCESSES-AN INTERNATIONAL JOURNAL, 2019, 6 (01): : 155 - 174
  • [37] Potential Impacts of Projected Climate Change under CMIP5 RCP Scenarios on Streamflow in the Wabash River Basin
    Wang, Jingrui
    Hu, Litang
    Li, Didi
    Ren, Meifang
    ADVANCES IN METEOROLOGY, 2020, 2020
  • [38] Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea
    Kim, Jinsoo
    Choi, Jisun
    Choi, Chuluong
    Park, Soyoung
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 452 : 181 - 195
  • [39] Trend and persistence of precipitation under climate change scenarios for Kansabati basin, India
    Mishra, Ashok K.
    Ozger, Mehmet
    Singh, Vijay P.
    HYDROLOGICAL PROCESSES, 2009, 23 (16) : 2345 - 2357
  • [40] Assessment of climate change impact on future streamflow at Bernam river basin Malaysia
    Ismail, H.
    Rowshon, M. K.
    Hin, L. S.
    Abdullah, A. F. B.
    Nasidi, N. M.
    10TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING, 2020, 540