A Spherical Hybrid Triboelectric Nanogenerator for Enhanced Water Wave Energy Harvesting

被引:53
作者
Lee, Kwangseok [1 ]
Lee, Jeong-won [1 ]
Kim, Kihwan [1 ]
Yoo, Donghyeon [1 ]
Kim, Dong Sung [1 ]
Hwang, Woonbong [1 ]
Song, Insang [2 ]
Sim, Jae-Yoon [3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, Pohang 37673, South Korea
[2] ADD, Daejeon 34186, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
triboelectric nanogenerator; energy harvesting; hybrid energy; water wave energy; RENEWABLE ENERGY; STRUCTURAL OPTIMIZATION; MECHANICAL ENERGY; SHOE INSOLE; VIBRATION; SENSOR; LAYER;
D O I
10.3390/mi9110598
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Water waves are a continuously generated renewable source of energy. However, their random motion and low frequency pose significant challenges for harvesting their energy. Herein, we propose a spherical hybrid triboelectric nanogenerator (SH-TENG) that efficiently harvests the energy of low frequency, random water waves. The SH-TENG converts the kinetic energy of the water wave into solid-solid and solid-liquid triboelectric energy simultaneously using a single electrode. The electrical output of the SH-TENG for six degrees of freedom of motion in water was investigated. Further, in order to demonstrate hybrid energy harvesting from multiple energy sources using a single electrode on the SH-TENG, the charging performance of a capacitor was evaluated. The experimental results indicate that SH-TENGs have great potential for use in self-powered environmental monitoring systems that monitor factors such as water temperature, water wave height, and pollution levels in oceans.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy [J].
Ahmed, Abdelsalam ;
Saadatnia, Zia ;
Hassan, Islam ;
Zi, Yunlong ;
Xi, Yi ;
He, Xu ;
Zu, Jean ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2017, 7 (07)
[2]   Integrated Multi layered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions [J].
Bai, Peng ;
Zhu, Guang ;
Lin, Zong-Hong ;
Jing, Qingshen ;
Chen, Jun ;
Zhang, Gong ;
Ma, Jusheng ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (04) :3713-3719
[3]   SIMILARITY OF THE WIND WAVE SPECTRUM IN FINITE DEPTH WATER .1. SPECTRAL FORM [J].
BOUWS, E ;
GUNTHER, H ;
ROSENTHAL, W ;
VINCENT, CL .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1985, 90 (NC1) :975-986
[4]   To catch a wave [J].
Callaway, Ewen .
NATURE, 2007, 450 (7167) :156-159
[5]   Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator [J].
Chen, Jun ;
Wang, Zhong Lin .
JOULE, 2017, 1 (03) :480-521
[6]  
Chen J, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.138, 10.1038/nenergy.2016.138]
[7]   Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators [J].
Chen, Jun ;
Yang, Jin ;
Guo, Hengyu ;
Li, Zhaoling ;
Zheng, Li ;
Su, Yuanjie ;
Wen, Zhen ;
Fan, Xing ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (12) :12334-12343
[8]   Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy [J].
Chen, Jun ;
Yang, Jin ;
Li, Zhaoling ;
Fan, Xing ;
Zi, Yunlong ;
Jing, Qingshen ;
Guo, Hengyu ;
Wen, Zhen ;
Pradel, Ken C. ;
Niu, Simiao ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (03) :3324-3331
[9]   Personalized Keystroke Dynamics for Self-Powered Human-Machine Interfacing [J].
Chen, Jun ;
Zhu, Guang ;
Yang, Jin ;
Jing, Qingshen ;
Bai, Peng ;
Yang, Weiqing ;
Qi, Xuewei ;
Su, Yuanjie ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (01) :105-116
[10]   Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor [J].
Chen, Jun ;
Zhu, Guang ;
Yang, Weiqing ;
Jing, Qingshen ;
Bai, Peng ;
Yang, Ya ;
Hou, Te-Chien ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2013, 25 (42) :6094-6099