TOUGH+CO2: A multiphase fluid-flow simulator for CO2 geologic sequestration in saline aquifers

被引:13
|
作者
Zhang, Keni [1 ]
Moridis, George [1 ]
Pruess, Karsten [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA
关键词
CO2 geologic sequestration; Saline aquifer; Modeling; TOUGH; TOUGH2; Parallel computing; Multiphase flow; POROUS-MEDIA; NUMERICAL-MODEL; TRANSPORT; SOILS;
D O I
10.1016/j.cageo.2010.09.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
TOUGH +CO2 is a new simulator for modeling of CO2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat and up to 3 mass components, which are partitioned into three possible phases. In the code, the thermodynamics and thermophysical properties of H2O-NaCl-CO2 mixtures are determined based on system status and subdivided into six different phase combinations. By solving coupled mass and heat balance equations, TOUGH +CO2 can model non-isothermal or isothermal CO2 injection, phase behavior and flow of fluids and heat under typical conditions of temperature, pressure and salinity in CO2 geologic storage projects. The code takes into account effects of salt precipitation on porosity and permeability changes, and the wettability phenomena. The new simulator inherits all capabilities of TOUGH2 in handling fractured media and using unstructured meshes for complex simulation domains. The code adds additional relative permeability and capillary pressure functions. The FORTRAN 95 OOP architecture and other new language features have been extensively used to enhance memory use and computing efficiency. In addition, a domain decomposition approach has been implemented for parallel simulation. All these features lead to increased computational efficiency, and allow applicability of the code to multi-core/processor parallel computing platforms with excellent scalability. Published by Elsevier Ltd.
引用
收藏
页码:714 / 723
页数:10
相关论文
共 50 条
  • [41] Effects of CO2 Compressibility on CO2 Storage in Deep Saline Aquifers
    Victor Vilarrasa
    Diogo Bolster
    Marco Dentz
    Sebastia Olivella
    Jesus Carrera
    Transport in Porous Media, 2010, 85 : 619 - 639
  • [42] Effects of CO2 Compressibility on CO2 Storage in Deep Saline Aquifers
    Vilarrasa, Victor
    Bolster, Diogo
    Dentz, Marco
    Olivella, Sebastia
    Carrera, Jesus
    TRANSPORT IN POROUS MEDIA, 2010, 85 (02) : 619 - 639
  • [43] Convective dissolution of CO2 in saline aquifers
    Hesse, M. A.
    Riaz, A.
    Tchelepi, H. A.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (15) : A401 - A401
  • [44] Sequestration of CO2 in geological media in response to climate change:: capacity of deep saline aquifers to sequester CO2 in solution
    Bachu, S
    Adams, JJ
    ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (20) : 3151 - 3175
  • [45] Evolution and control of the saline aquifer pressure system: A perspective on CO2 geologic sequestration
    Wang, Dian
    Li, Jun
    Lian, Wei
    Yang, Hongwei
    Zhang, Juncheng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2025, 196
  • [46] Simulation of CO2 storage in saline aquifers
    Ghanbari, S.
    Al-Zaabi, Y.
    Pickup, G. E.
    Mackay, E.
    Gozalpour, F.
    Todd, A. C.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2006, 84 (A9): : 764 - 775
  • [47] CO2 dissolution in the presence of background flow of deep saline aquifers
    Emami-Meybodi, Hamid
    Hassanzadeh, Hassan
    Ennis-King, Jonathan
    WATER RESOURCES RESEARCH, 2015, 51 (04) : 2595 - 2615
  • [48] Three-phase equilibrium and partitioning calculations for CO2 sequestration in saline aquifers
    Fuller, R. C.
    Prevost, J. H.
    Piri, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B6)
  • [49] Effects of Impurities on CO2 Sequestration in Saline Aquifers: Perspective of Interfacial Tension and Wettability
    Chen, Cong
    Chai, Zhuang
    Shen, Weijun
    Li, Weizhong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (01) : 371 - 379
  • [50] A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers
    Kumar, Sunil
    Foroozesh, Jalal
    Edlmann, Katriona
    Rezk, Mohamed Gamal
    Lim, Chun Yan
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 81 (81)