RNA Interference as a Tool for Exploring HIV-1 Robustness

被引:12
作者
Nevot, Maria [1 ]
Martrus, Gloria [1 ]
Clotet, Bonaventura [1 ]
Angel Martinez, Miguel [1 ]
机构
[1] Univ Autonoma Barcelona, Hosp Univ Germans Trias & Pujol, Fundacio irsiCaixa, Badalona 08916, Spain
关键词
RNAi; HIV-1; escape; evolution; IMMUNODEFICIENCY-VIRUS TYPE-1; ESCAPE; REPLICATION; INHIBITION; INFECTION; GENOME; EXPRESSION; EVOLUTION; PROGRESS;
D O I
10.1016/j.jmb.2011.08.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Short interfering RNAs (siRNAs) that target viral genes can efficiently inhibit human immunodeficiency virus type 1 (HIV-1) replication. Nevertheless, there is the potential for viral escape, particularly with a highly mutable target such as HIV-1. We present a novel strategy for anticipating and preventing viral escape using second-generation siRNAs. The evolutionary capacity of HIV-1 was tested by exerting strong selective pressure on a highly conserved sequence in the HIV-1 genome. We assayed the antiviral efficacy of five overlapping siRNAs directed against an essential region of the HIV-1 protease. Serial viral transfers in U87-CD4-CXCR4 cells were performed using four of the siRNAs. This procedure was repeated until virus breakthrough was detected. After several serial culture passages, resistant virus with a single point mutation in the targeted region was detected in the culture supernatants. The emergence of resistant virus was confirmed by molecular cloning and DNA sequencing of viral RNA. The most common escape route was the D30N mutation. Importantly, the addition of a second-generation siRNA that matched the D30N mutation restored viral inhibition and delayed development of escape variants. Passages performed with both siRNAs prevented the emergence of the D30N escape mutant and forced the virus to develop new escape routes. Thus, second-generation siRNAs can be used to block escape from RNA interference (RNAi) and to search for new RNAi escape routes. The protocol described here may be useful for exploring the sequence space available for HIV-1 evolution and for producing attenuated or deleterious viruses. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 27 条
[1]  
Berkhout B, 2010, RNA INTERFERENCE AND VIRUSES, P127
[2]   Human immunodeficiency virus type 1 escape from RNA interference [J].
Boden, D ;
Pusch, O ;
Lee, F ;
Tucker, L ;
Ramratnam, B .
JOURNAL OF VIROLOGY, 2003, 77 (21) :11531-11535
[3]  
Brass AL, 2008, SCIENCE, V319, P921, DOI 10.1126/science.1152725
[4]  
C Kuiken, 2010, 1003684 LAUR LOS AL
[5]   Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition [J].
Das, AT ;
Brummelkamp, TR ;
Westerhout, EM ;
Vink, M ;
Madiredjo, M ;
Bernards, R ;
Berkhout, B .
JOURNAL OF VIROLOGY, 2004, 78 (05) :2601-2605
[6]   HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms [J].
Das, Atze T. ;
Berkhout, Ben .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 365 (1548) :1965-1973
[7]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[8]   Fitness landscape of human immunodeficiency virus type 1 protease quasispecies [J].
Fernandez, Guerau ;
Clotet, Bonaventura ;
Martinez, Miguel Angel .
JOURNAL OF VIROLOGY, 2007, 81 (05) :2485-2496
[9]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[10]   Endoribonuclease-prepared short interfering RNAs induce effective and specific inhibition of human immunodeficiency virus type 1 replication [J].
Gimenez-Barcons, Mireia ;
Clotet, Bonaventura ;
Martinez, Miguel Angel .
JOURNAL OF VIROLOGY, 2007, 81 (19) :10680-10686