ON THE LENGTHS OF IRREDUCIBLE PAIRS OF COMPLEX MATRICES

被引:14
作者
Longstaff, W. E. [1 ]
Rosenthal, Peter [2 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
Length; words; REPRESENTATIONS; THEOREM; SIZE;
D O I
10.1090/S0002-9939-2011-11149-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The length of a pair of matrices is the smallest integer l such that words in the matrices with at most l factors span the unital algebra generated by the pair. Upper bounds for lengths have been much studied. If B is a rank one n x n (complex) matrix, the length of the irreducible pair {A, B} is 2n - 2 and the subwords of A(n-1)BA(n-2) form a basis for M-n(C). New examples are given of irreducible pairs of n x n matrices of length n. There exists an irreducible pair of 5 x 5 matrices of length 4. We begin the study of determining lower bounds for lengths.
引用
收藏
页码:3769 / 3777
页数:9
相关论文
共 9 条
[1]   INVARIANT SUBSPACE LATTICE OF A LINEAR TRANSFORMATION [J].
BRICKMAN, L ;
FILLMORE, PA .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04) :810-&
[2]   Lengths of finite dimensional representations of PBW algebras [J].
Constantine, D ;
Darnall, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 395 :175-181
[3]  
Freedman A, 1997, PAC J MATH, P159
[4]   ON THE LENGTHS OF PAIRS OF COMPLEX MATRICES OF SIZE SIX [J].
Lambrou, M. S. ;
Longstaff, W. E. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (02) :177-201
[5]   On the lengths of pairs of complex matrices of size at most five [J].
Longstaff, W. E. ;
Niemeyer, A. C. ;
Panaia, Oreste .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (03) :461-472
[6]   Burnside's theorem: irreducible pairs of transformations [J].
Longstaff, WE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 382 :247-269
[7]   An upper bound for the length of a finite-dimensional algebra [J].
Pappacena, CJ .
JOURNAL OF ALGEBRA, 1997, 197 (02) :535-545
[8]  
Paz A., 1984, Linear Multilinear Algebra, V15, P161, DOI [/10.1080/03081088408817585, DOI 10.1080/03081088408817585, 10.1080/03081088408817585]
[9]  
RADJAVI H, 1970, J LONDON MATH SOC, V2, P557