Thieves can make sandwiches

被引:9
作者
Blagojevic, Pavle V. M. [1 ,2 ]
Soberon, Pablo [3 ]
机构
[1] Free Univ Berlin, Inst Math, Arnimallee 2, D-14195 Berlin, Germany
[2] Math Inst SANU, Knez Mihailova 36, Belgrade 11001, Serbia
[3] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
52A99; 52A37; 55S91 (primary); 05A18 (secondary); CONVEX EQUIPARTITIONS; BORSUK-ULAM; NECKLACES; THEOREM; PARTITIONS; BISECTION;
D O I
10.1112/blms.12109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a common generalization of the Ham Sandwich theorem and Alon's Necklace Splitting theorem. Our main results show the existence of fair distributions of m measures in Rd among r thieves using roughly mr/d convex pieces, even in the cases when m is larger than the dimension. The main proof relies on a construction of a geometric realization of the topological join of two spaces of partitions of Rd into convex parts, and the computation of the Fadell-Husseini ideal valued index of the resulting spaces.
引用
收藏
页码:108 / 123
页数:16
相关论文
共 20 条
[1]   SPLITTING NECKLACES [J].
ALON, N .
ADVANCES IN MATHEMATICS, 1987, 63 (03) :247-253
[2]   THE BORSUK-ULAM THEOREM AND BISECTION OF NECKLACES [J].
ALON, N ;
WEST, DB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (04) :623-628
[3]  
Asada M., SIAM J DISCRETE MATH
[4]  
AURENHAMMER F, 1991, COMPUT SURV, V23, P345, DOI 10.1145/116873.116880
[5]   The early history of the ham sandwich theorem [J].
Beyer, WA ;
Zardecki, A .
AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (01) :58-61
[6]   Equivariant topology of configuration spaces [J].
Blagojevic, Pavle V. M. ;
Lueck, Wolfgang ;
Ziegler, Guenter M. .
JOURNAL OF TOPOLOGY, 2015, 8 (02) :414-456
[7]   Convex equipartitions via Equivariant Obstruction Theory [J].
Blagojevic, Pavle V. M. ;
Ziegler, Guenter M. .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) :49-77
[8]  
Cohen F, 1976, HOMOLOGY CN 1 SPACES, P207
[9]   Splitting multidimensional necklaces [J].
de Longueville, Mark ;
Zivaljevic, Rade T. .
ADVANCES IN MATHEMATICS, 2008, 218 (03) :926-939
[10]   AN IDEAL-VALUED COHOMOLOGICAL INDEX THEORY WITH APPLICATIONS TO BORSUK-ULAM AND BOURGIN-YANG THEOREMS [J].
FADELL, E ;
HUSSEINI, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 :73-85