A quantum is a complex structure on classical phase space

被引:1
|
作者
Isidro, JM
机构
[1] UVEG, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
quantum mechanics; classical phase space; complex-analytic functions; duality;
D O I
10.1142/S0219887805000673
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Duality transformations within the quantum mechanics of a finite number of degrees of freedom can be regarded as the dependence of the notion of a quantum, i.e., an elementary excitation of the vacuum, on the observer on classical phase space. Under an observer we understand, as in general relativity, a local coordinate chart. While classical mechanics can be formulated using a symplectic structure on classical phase space, quantum mechanics requires a complex-differentiable structure on that same space. Complex-differentiable structures on a given real manifold are often not unique. This article is devoted to analysing the dependence of the notion of a quantum on the complex-differentiable structure chosen on classical phase space. For that purpose we consider Kahler phase spaces, endowed with a dynamics whose Hamiltonian equals the local Kahler potential.
引用
收藏
页码:633 / 655
页数:23
相关论文
共 50 条
  • [21] Geometry and Structure of Quantum Phase Space
    Hoshang Heydari
    Foundations of Physics, 2015, 45 : 851 - 857
  • [22] ON THE STRUCTURE OF QUANTUM PHASE-SPACE
    ALDROVANDI, R
    GALETTI, D
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (12) : 2987 - 2995
  • [23] Geometry and Structure of Quantum Phase Space
    Heydari, Hoshang
    FOUNDATIONS OF PHYSICS, 2015, 45 (07) : 851 - 857
  • [24] The Quantum-Classical transition: The fate of the complex structure
    Marmo, G
    Scolarici, G
    Simoni, A
    Ventriglia, F
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2005, 2 (01) : 127 - 145
  • [25] Transport in open quantum systems: comparing classical and quantum phase space dynamics
    Ferry, D. K.
    Akis, R.
    Brunner, R.
    Meisels, R.
    Kuchar, F.
    Bird, J. P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (03) : 259 - 262
  • [26] Transport in open quantum systems: comparing classical and quantum phase space dynamics
    D. K. Ferry
    R. Akis
    R. Brunner
    R. Meisels
    F. Kuchar
    J. P. Bird
    Journal of Computational Electronics, 2008, 7 : 259 - 262
  • [27] Phase space correspondence between classical optics and quantum mechanics
    Dragoman, D
    PROGRESS IN OPTICS, VOLUME 43, 2002, 43 : 433 - 496
  • [28] Classical and quantum-mechanical phase-space distributions
    Kiesel, Thomas
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [29] Quantum and classical phase space evolution: a local measure of delocalization
    Korsch, HJ
    Leyes, W
    NEW JOURNAL OF PHYSICS, 2002, 4 : 62.1 - 62.15
  • [30] Phase-space distributions and the classical component of quantum observables
    Luis, A
    PHYSICAL REVIEW A, 2003, 67 (06):