A quantum is a complex structure on classical phase space

被引:1
|
作者
Isidro, JM
机构
[1] UVEG, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
quantum mechanics; classical phase space; complex-analytic functions; duality;
D O I
10.1142/S0219887805000673
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Duality transformations within the quantum mechanics of a finite number of degrees of freedom can be regarded as the dependence of the notion of a quantum, i.e., an elementary excitation of the vacuum, on the observer on classical phase space. Under an observer we understand, as in general relativity, a local coordinate chart. While classical mechanics can be formulated using a symplectic structure on classical phase space, quantum mechanics requires a complex-differentiable structure on that same space. Complex-differentiable structures on a given real manifold are often not unique. This article is devoted to analysing the dependence of the notion of a quantum on the complex-differentiable structure chosen on classical phase space. For that purpose we consider Kahler phase spaces, endowed with a dynamics whose Hamiltonian equals the local Kahler potential.
引用
收藏
页码:633 / 655
页数:23
相关论文
共 50 条
  • [1] QUANTUM EVOLUTION AND CLASSICAL FLOW IN COMPLEX PHASE-SPACE
    GRAFFI, S
    PARMEGGIANI, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (02) : 393 - 409
  • [2] Classical and quantum mechanics of complex Hamiltonian systems: An extended complex phase space approach
    Kaushal, R. S.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (02): : 287 - 297
  • [3] Classical and quantum mechanics of complex hamiltonian systems: An extended complex phase space approach
    R. S. Kaushal
    Pramana, 2009, 73 : 287 - 297
  • [4] COMPARISON OF CLASSICAL AND QUANTUM PHASE-SPACE STRUCTURE OF NONRIGID MOLECULES, LICN
    BENITO, RM
    BORONDO, F
    KIM, JH
    SUMPTER, BG
    EZRA, GS
    CHEMICAL PHYSICS LETTERS, 1989, 161 (01) : 60 - 66
  • [5] Numerical investigation of the effects of classical phase space structure on a quantum system with decoherence
    Ball, G
    Vant, K
    Christensen, N
    PHYSICAL REVIEW E, 2000, 61 (02) : 1299 - 1311
  • [6] QUANTUM THERMODYNAMICS IN CLASSICAL PHASE-SPACE
    CUCCOLI, A
    TOGNETTI, V
    VERRUCCHI, P
    VAIA, R
    PHYSICAL REVIEW A, 1992, 45 (12): : 8418 - 8429
  • [7] THE USE OF PHASE SPACE IN CLASSICAL AND QUANTUM THEORY
    CORBEN, HC
    PHYSICAL REVIEW, 1948, 74 (07): : 788 - 794
  • [8] Decoherence and the quantum-classical transition in phase space
    Davidovich, L
    de Matos, RL
    Toscano, F
    Atomic Physics 19, 2005, 770 : 301 - 310
  • [9] Decoherence and the quantum-classical limit in phase space
    Davidovich, L
    Toscano, F
    de Matos, RL
    Fluctuations and Noise in Photonics and Quantum Optics III, 2005, 5846 : 220 - 231
  • [10] Phase space quantum-classical hybrid model
    Garcia, Gerardo
    Ares, Laura
    Luis, Alfredo
    ANNALS OF PHYSICS, 2019, 411