Encoding Human Driving Styles in Motion Planning for Autonomous Vehicles

被引:14
|
作者
Karlsson, Jesper [1 ]
van Waveren, Sanne [1 ]
Pek, Christian [1 ]
Torre, Ilaria [1 ]
Leite, Iolanda [1 ]
Tumova, Jana [1 ]
机构
[1] KTH Royal Inst Technol Stockholm, Div Robot Percept & Learning, Stockholm, Sweden
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021) | 2021年
基金
瑞典研究理事会;
关键词
Autonomous Vehicle Navigation; Formal Methods in Robotics and Automation; Human Factors and Human-in-the-Loop;
D O I
10.1109/ICRA48506.2021.9561777
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Driving styles play a major role in the acceptance and use of autonomous vehicles. Yet, existing motion planning techniques can often only incorporate simple driving styles that are modeled by the developers of the planner and not tailored to the passenger. We present a new approach to encode human driving styles through the use of signal temporal logic and its robustness metrics. Specifically, we use a penalty structure that can be used in many motion planning frameworks, and calibrate its parameters to model different automated driving styles. We combine this penalty structure with a set of signal temporal logic formula, based on the Responsibility-Sensitive Safety model, to generate trajectories that we expected to correlate with three different driving styles: aggressive, neutral, and defensive. An online study showed that people perceived different parameterizations of the motion planner as unique driving styles, and that most people tend to prefer a more defensive automated driving style, which correlated to their self-reported driving style.
引用
收藏
页码:1050 / 1056
页数:7
相关论文
共 50 条
  • [31] Motion Planning for Autonomous Driving with a Conformal Spatiotemporal Lattice
    McNaughton, Matthew
    Urmson, Chris
    Dolan, John M.
    Lee, Jin-Woo
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [32] Motion Planning for Autonomous Driving in Dense Traffic Scenarios
    Xiao, Yuwei
    Yao, Xizi
    Hu, Xuemin
    Luo, Xianzhi
    Computer Engineering and Applications, 2024, 60 (14) : 114 - 122
  • [33] Dynamic risk assessment in autonomous vehicles motion planning
    Wardzinski, Andrzej
    PROCEEDINGS OF THE 2008 1ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, 2008, : 127 - 130
  • [34] Motion Planning of Autonomous Road Vehicles by Particle Filtering
    Berntorp, Karl
    Hoang, Tru
    Di Cairano, Stefano
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2019, 4 (02): : 197 - 210
  • [35] A Constrained VFH Algorithm for Motion Planning of Autonomous Vehicles
    Qu, Panrang
    Xue, Jianru
    Ma, Liang
    Ma, Chao
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 700 - 705
  • [36] Fail-Safe Motion Planning of Autonomous Vehicles
    Magdici, Silvia
    Althoff, Matthias
    2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2016, : 452 - 458
  • [37] Online motion planning for autonomous vehicles in vast environments
    Mercy, Tim
    Hostens, Erik
    Pipeleers, Goele
    2018 IEEE 15TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2018, : 114 - 119
  • [38] Recent Advances in Motion Planning and Control of Autonomous Vehicles
    Li, Bai
    Chen, Xiaoming
    Acarman, Tankut
    Li, Xiaohui
    Zhang, Youmin
    ELECTRONICS, 2023, 12 (23)
  • [39] A probabilistic optimization approach for motion planning of autonomous vehicles
    Kim, Junsoo
    Jo, Kichun
    Lim, Wonteak
    Sunwoo, Myoungho
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2018, 232 (05) : 632 - 650
  • [40] Motion Planning for Autonomous Vehicles Based on Sequential Optimization
    Diachuk, Maksym
    Easa, Said M.
    VEHICLES, 2022, 4 (02): : 344 - 374