Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries

被引:452
|
作者
Chen, Yu Ming [1 ]
Yu, Xin Yao [2 ]
Li, Zhen [1 ]
Paik, Ungyu [2 ]
Lou, Xiong Wen [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[2] Hanyang Univ, WCU, Dept Energy Engn, Seoul 133791, South Korea
来源
SCIENCE ADVANCES | 2016年 / 2卷 / 07期
关键词
ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; HIGH-CAPACITY; LAYER MOS2; NANOFIBERS; GRAPHENE; STORAGE; NANOSHEETS; NANOSPHERES;
D O I
10.1126/sciadv.1600021
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molybdenum disulfide (MoS2), a typical two-dimensional material, is a promising anode material for lithium-ion batteries because it has three times the theoretical capacity of graphite. The main challenges associated with MoS2 anodes are the structural degradation and the low rate capability caused by the low intrinsic electric conductivity and large strain upon cycling. Here, we design hierarchical MoS2 tubular structures internally wired by carbon nanotubes (CNTs) to tackle these problems. These porous MoS2 tubular structures are constructed from building blocks of ultrathin nanosheets, which are believed to benefit the electrochemical reactions. Benefiting from the unique structural and compositional characteristics, these CNT-wired MoS2 tubular structures deliver a very high specific capacity of similar to 1320 mAh g(-1) at a current density of 0.1 A g(-1), exceptional rate capability, and an ultralong cycle life of up to 1000 cycles. This work may inspire new ideas for constructing high-performance electrodes for electrochemical energy storage.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] 3D MoS2/graphene nanoflowers as anode for advanced lithium-ion batteries
    He, Han-bing
    Liu, Zhen
    Peng, Chao-qun
    Liu, Jun
    Wang, Xiao-feng
    Zeng, Jing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (12) : 4041 - 4049
  • [22] MoS2/nitrogen-doped carbon hybrid nanorods with expanded interlayer spacing as an advanced anode material for lithium ion batteries
    Zhu, Qingbin
    Zhao, Chaochao
    Bian, Yanxin
    Mao, Changming
    Peng, Hongrui
    Li, Guicun
    Chen, Kezheng
    SYNTHETIC METALS, 2018, 235 : 103 - 109
  • [23] Ingenious Interlacement of CoNiO2 on Carbon Nanotubes for Highly Stable Lithium-Ion Batteries
    Zhao, Yu-Shen
    Li, Chang-Shuo
    Lv, Ze-Chen
    Wang, Peng-Fei
    Yi, Ting-Feng
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2023, 36 (01): : 158 - 166
  • [24] Ni-Doped SnO2 Nanoparticles Anchored on Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries
    Ye, Wenbin
    Feng, Zuyong
    Xiong, Deping
    He, Miao
    ACS APPLIED NANO MATERIALS, 2023, 6 (18) : 16524 - 16535
  • [25] A germanium nanoparticles/molybdenum disulphide (MoS2) nanocomposite as a high-capacity, high-rate anode material for lithium-ion batteries
    Hsieh, Meng-Hsun
    Li, Guo-An
    Chang, Wei-Chung
    Tuan, Hsing-Yu
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (08) : 4114 - 4121
  • [26] Anode Material for Lithium-Ion Batteries Based on MoS2 and Conductive Polymer Binder: Effects of Electrode Thickness
    Volkov, A., I
    Tolstopjatova, E. G.
    Kondratiev, V. V.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (10): : 1 - 23
  • [27] Few-Layered MoS2/Acetylene Black Composite as an Efficient Anode Material for Lithium-Ion Batteries
    Badam, Rajashekar
    Joshi, Prerna
    Vedarajan, Raman
    Natarajan, Rajalakshmi
    Matsumi, Noriyoshi
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [28] Enhanced Hydrothermal Synthesis and Electrochemical Performance of Subsphaeroidal MoS2 used as Anode Material for Lithium-Ion Batteries
    Wu Yang
    Zhang Liangliang
    Wang Wei
    Fan Dongsheng
    Yang Shenshen
    Bai Yunhao
    Li Jiwen
    Liu Wei
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (08) : 2893 - 2900
  • [29] Facile synthesis of Sn/MoS2/C composite as an anode material for lithium-ion batteries with outstanding performance
    Wang, Hongqiang
    Pan, Qichang
    Chen, Jing
    Zan, Yahui
    Huang, Youguo
    Yang, Guanhua
    Yan, Zhixiong
    Li, Qingyu
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (02) : 1263 - 1268
  • [30] Hierarchical α-MnO2 nanowires as an efficient anode material for rechargeable lithium-ion batteries
    Umeshbabu, Ediga
    Satyanarayana, M.
    Karkera, Guruprakash
    Pullamsetty, Ashok
    Justin, P.
    MATERIALS ADVANCES, 2022, 3 (03): : 1642 - 1651