Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides

被引:255
作者
Huang, Huaqing [1 ,2 ]
Zhou, Shuyun [1 ,2 ]
Duan, Wenhui [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
WANNIER FUNCTIONS; SEMIMETAL; CD3AS2;
D O I
10.1103/PhysRevB.94.121117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, a new "type-II" Weyl fermion, which exhibits exotic phenomena, such as an angle-dependent chiral anomaly, was discovered in a new phase of matter where electron and hole pockets contact at isolated Weyl points [Nature (London) 527, 495 (2015)]. This raises an interesting question about whether its counterpart, i.e., a type-II Dirac fermion, exists in real materials. Here, we predict the existence of symmetry-protected type-II Dirac fermions in a class of transition metal dichalcogenide materials. Our first-principles calculations on PtSe2 reveal its bulk type-II Dirac fermions which are characterized by strongly tilted Dirac cones, novel surface states, and exotic doping-driven Lifshitz transition. Our results show that the existence of type-II Dirac fermions in PtSe2-type materials is closely related to its structural P (3) over bar m1 symmetry, which provides useful guidance for the experimental realization of type-II Dirac fermions and intriguing physical properties distinct from those of the standard Dirac fermions known before.
引用
收藏
页数:6
相关论文
共 52 条
[1]   Quantum magnetoresistance [J].
Abrikosov, AA .
PHYSICAL REVIEW B, 1998, 58 (05) :2788-2794
[2]  
Bir G.L., 1974, SYMMETRY STRAIN INDU, V624
[3]   Experimental Realization of a Three-Dimensional Dirac Semimetal [J].
Borisenko, Sergey ;
Gibson, Quinn ;
Evtushinsky, Danil ;
Zabolotnyy, Volodymyr ;
Buechner, Bernd ;
Cava, Robert J. .
PHYSICAL REVIEW LETTERS, 2014, 113 (02)
[4]   Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals [J].
Bradlyn, Barry ;
Cano, Jennifer ;
Wang, Zhijun ;
Vergniory, M. G. ;
Felser, C. ;
Cava, R. J. ;
Bernevig, B. Andrei .
SCIENCE, 2016, 353 (6299)
[5]   Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2 [J].
Bruno, F. Y. ;
Tamai, A. ;
Wu, Q. S. ;
Cucchi, I. ;
Barreteau, C. ;
de la Torre, A. ;
Walker, S. McKeown ;
Ricco, S. ;
Wang, Z. ;
Kim, T. K. ;
Hoesch, M. ;
Shi, M. ;
Plumb, N. C. ;
Giannini, E. ;
Soluyanov, A. A. ;
Baumberger, F. .
PHYSICAL REVIEW B, 2016, 94 (12)
[6]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[7]   Stable Dirac semimetal in the allotropes of group-IV elements [J].
Cao, Wendong ;
Tang, Peizhe ;
Zhang, Shou-Cheng ;
Duan, Wenhui ;
Rubio, Angel .
PHYSICAL REVIEW B, 2016, 93 (24)
[8]  
Chang T. R., ARXIV160607555
[9]   Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1-xTe2 [J].
Chang, Tay-Rong ;
Xu, Su-Yang ;
Chang, Guoqing ;
Lee, Chi-Cheng ;
Huang, Shin-Ming ;
Wang, BaoKai ;
Bian, Guang ;
Zheng, Hao ;
Sanchez, Daniel S. ;
Belopolski, Ilya ;
Alidoust, Nasser ;
Neupane, Madhab ;
Bansil, Arun ;
Jeng, Horng-Tay ;
Lin, Hsin ;
Hasan, M. Zahid .
NATURE COMMUNICATIONS, 2016, 7
[10]  
Deng K, 2016, NAT PHYS, V12, P1105, DOI [10.1038/nphys3871, 10.1038/NPHYS3871]