Large-amplitude steady rotational water waves

被引:73
作者
Ko, Joy [1 ]
Strauss, Walter [1 ,2 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Brown Univ, Lefschetz Ctr Dynam Syst, Providence, RI 02912 USA
关键词
vorticity; rotational water waves; extreme waves; stagnation;
D O I
10.1016/j.euromechflu.2007.04.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Two-dimensional, finite-depth periodic water waves with general vorticity and large amplitude are computed. The mathematical formulation and numerical method that allow us to compute a continuum of such waves with arbitrary vorticity are described. The problems of whether extreme waves exist, where their stagnation points occur, and what qualitative features such waves possess are addressed here with particular emphasis on constant vorticity. (C) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:96 / 109
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 2001, ADV SERIES NONLINEAR
[2]   THE SOLITARY WAVE ON A STREAM WITH AN ARBITRARY DISTRIBUTION OF VORTICITY [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1962, 12 (01) :97-116
[3]   Symmetry of steady deep-water waves with vorticity [J].
Constantin, A ;
Escher, J .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2004, 15 :755-768
[4]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[5]  
CONSTANTIN A, 2007, IN PRESS PHILOS T RO
[6]   NUMERICAL-MODEL FOR PERIODIC FINITE-AMPLITUDE WAVES ON A ROTATIONAL FLUID [J].
DALRYMPLE, RA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 24 (01) :29-42
[7]   STEEP, STEADY SURFACE-WAVES ON WATER OF FINITE DEPTH WITH CONSTANT VORTICITY [J].
DASILVA, AFT ;
PEREGRINE, DH .
JOURNAL OF FLUID MECHANICS, 1988, 195 :281-302
[8]  
Dubreil-Jacotin ML., 1934, J MATH PURE APPL, V13, P217
[9]  
HUR VM, 2007, IN PRESS PHILOS T RO
[10]   The Boussinesq-Rayleigh approximation for rotational solitary waves on shallow water with uniform vorticity [J].
Miroshnikov, VA .
JOURNAL OF FLUID MECHANICS, 2002, 456 :1-32