Multiple Instance Captioning: Learning Representations from Histopathology Textbooks and Articles

被引:41
作者
Gamper, Jevgenij [1 ]
Rajpoot, Nasir [1 ]
机构
[1] Univ Warwick, Coventry, W Midlands, England
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
D O I
10.1109/CVPR46437.2021.01628
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present ARCH, a computational pathology (CP) multiple instance captioning dataset to facilitate dense supervision of CP tasks. Existing CP datasets focus on narrow tasks; ARCH on the other hand contains dense diagnostic and morphological descriptions for a range of stains, tissue types and pathologies. Using intrinsic dimensionality estimation, we show that ARCH is the only CP dataset to (ARCH-)rival its computer vision analog MS-COCO Captions. We conjecture that an encoder pre-trained on dense image captions learns transferable representations for most CP tasks. We support the conjecture with evidence that ARCH representation transfers to a variety of pathology sub-tasks better than ImageNet features or representations obtained via self-supervised or multi-task learning on pathology images alone. We release our best model and invite other researchers to test it on their CP tasks.
引用
收藏
页码:16544 / 16554
页数:11
相关论文
共 63 条
[21]   MILD-Net: Minimal information loss dilated network for gland instance segmentation in colon histology images [J].
Graham, Simon ;
Chen, Hao ;
Gamper, Jevgenij ;
Dou, Qi ;
Heng, Pheng-Ann ;
Snead, David ;
Tsang, Yee Wah ;
Rajpoot, Nasir .
MEDICAL IMAGE ANALYSIS, 2019, 52 :199-211
[22]  
He K, 2016, European conference on computer vision, P630, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
[23]   Similar image search for histopathology: SMILY [J].
Hegde, Narayan ;
Hipp, Jason D. ;
Liu, Yun ;
Emmert-Buck, Michael ;
Reif, Emily ;
Smilkov, Daniel ;
Terry, Michael ;
Cai, Carrie J. ;
Amin, Mahul B. ;
Mermel, Craig H. ;
Nelson, Phil Q. ;
Peng, Lily H. ;
Corrado, Greg S. ;
Stumpe, Martin C. .
NPJ DIGITAL MEDICINE, 2019, 2
[24]  
Hendrycks D., 2019, NeurIPS, P15663
[25]   Atlas of Digital Pathology: A Generalized Hierarchical Histological Tissue Type-Annotated Database for Deep Learning [J].
Hosseini, Mahdi S. ;
Chan, Lyndon ;
Tse, Gabriel ;
Tang, Michael ;
Deng, Jun ;
Norouzi, Sajad ;
Rowsell, Corwyn ;
Plataniotis, Konstantinos N. ;
Damaskinos, Savvas .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11739-11748
[26]  
Ilse M, 2018, PR MACH LEARN RES, V80
[27]  
Janowczyk Andrew, 2016, J Pathol Inform, V7, P29, DOI 10.4103/2153-3539.186902
[28]   Cellular community detection for tissue phenotyping in colorectal cancer histology images [J].
Javed, Sajid ;
Mahmood, Arif ;
Fraz, Muhammad Moazam ;
Koohbanani, Navid Alemi ;
Benes, Ksenija ;
Tsang, Yee-Wah ;
Hewitt, Katherine ;
Epstein, David ;
Snead, David ;
Rajpoot, Nasir .
MEDICAL IMAGE ANALYSIS, 2020, 63
[29]   Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey [J].
Jing, Longlong ;
Tian, Yingli .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (11) :4037-4058
[30]  
Kaplan Jared, 2020, Scaling Laws for Neural Language Models