Strategies for optimizing acetyl-CoA formation from glucose in bacteria

被引:29
作者
Zhu, Li [1 ]
Zhang, Jieze [2 ]
Yang, Jiawei [3 ,4 ]
Jiang, Yu [5 ,6 ]
Yang, Sheng [4 ,5 ]
机构
[1] Shanghai Laiyi Ctr Biopharmaceut R&D, Shanghai 200240, Peoples R China
[2] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Univ Chinese Acad Sci, Coll Life Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Key Lab Synthet Biol, Shanghai 200032, Peoples R China
[5] Chinese Acad Sci, Huzhou Ctr Ind Biotechnol, Shanghai Inst Biol Sci, Huzhou 313000, Peoples R China
[6] Shanghai Taoyusheng Biotechnol Co Ltd, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金;
关键词
PYRUVATE-DEHYDROGENASE COMPLEXES; OMEGA-3 EICOSAPENTAENOIC ACID; ESCHERICHIA-COLI; NONOXIDATIVE GLYCOLYSIS; PHOSPHOKETOLASE PATHWAY; YARROWIA-LIPOLYTICA; LACTOCOCCUS-LACTIS; MEVALONATE PATHWAY; CARBON METABOLISM; NADH INHIBITION;
D O I
10.1016/j.tibtech.2021.04.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Acetyl CoA is an important precursor for various chemicals. We provide a metabolic engineering guideline for the production of acetyl-CoA and other end products from a bacterial chassis. Among 13 pathways that produce acetyl-CoA from glucose, 11 lose carbon in the process, and two do not. The first 11 use the Embden-Meyerhof-Pamas (EMP) pathway to produce redox cofactors and gain or lose ATP. The other two pathways function via phosphoketolase with net consumption of ATP, so they must therefore be combined with one of the 11 glycolytic pathways or auxiliary pathways. Optimization of these pathways can maximize the theoretical acetyl-CoA yield, thereby minimizing the overall cost of subsequent acetyl-CoA-derived molecules. Other strategies for generating hyper-producer strains are also addressed.
引用
收藏
页码:149 / 165
页数:17
相关论文
共 108 条
  • [1] The potential of glycerol as a value-added commodity
    Anitha, M.
    Kamarudin, S. K.
    Kofli, N. T.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 295 : 119 - 130
  • [2] Holistic bioengineering: rewiring central metabolism for enhanced bioproduction
    Aslan, Selcuk
    Noor, Elad
    Bar-Even, Arren
    [J]. BIOCHEMICAL JOURNAL, 2017, 474 : 3935 - 3950
  • [3] Metabolic engineering of Escherichia coli for 1-butanol production
    Atsumi, Shota
    Cann, Anthony F.
    Connor, Michael R.
    Shen, Claire R.
    Smith, Kevin M.
    Brynildsen, Mark P.
    Chou, Katherine J. Y.
    Hanai, Taizo
    Liao, James C.
    [J]. METABOLIC ENGINEERING, 2008, 10 (06) : 305 - 311
  • [4] Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae
    Bergman, Alexandra
    Hellgren, John
    Moritz, Thomas
    Siewers, Verena
    Nielsen, Jens
    Chen, Yun
    [J]. MICROBIAL CELL FACTORIES, 2019, 18 (1)
  • [5] Synthetic non-oxidative glycolysis enables complete carbon conservation
    Bogorad, Igor W.
    Lin, Tzu-Shyang
    Liao, James C.
    [J]. NATURE, 2013, 502 (7473) : 693 - +
  • [6] Multilevel optimisation of anaerobic ethyl acetate production in engineered Escherichia coli
    Bohnenkamp, Anna C.
    Kruis, Aleksander J.
    Mars, Astrid E.
    Wijffels, Rene H.
    van der Oost, John
    Kengen, Serve W. M.
    Weusthuis, Ruud A.
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2020, 13 (01)
  • [7] Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    Bond-Watts, Brooks B.
    Bellerose, Robert J.
    Chang, Michelle C. Y.
    [J]. NATURE CHEMICAL BIOLOGY, 2011, 7 (04) : 222 - 227
  • [9] New AMP-forming acid:CoA ligases from Streptomyces lividans, some of which are posttranslationally regulated by reversible lysine acetylation
    Burckhardt, Rachel M.
    VanDrisse, Chelsey M.
    Tucker, Alex C.
    Escalante-Semerena, Jorge C.
    [J]. MOLECULAR MICROBIOLOGY, 2020, 113 (01) : 253 - 269
  • [10] Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions
    Burgard, AP
    Maranas, CD
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2001, 74 (05) : 364 - 375